terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Composition and biological potential of grape and wine phenolic compounds

Composition and biological potential of grape and wine phenolic compounds

Abstract

Polyphenols are common in human diets, primarily in plant-derived food and beverages. They influence multiple sensory properties such as aroma, flavour, colour, and taste, such as astringency and bitterness [1]. The major phenolic compounds in grapes and wines are anthocyanins and tannins (proanthocyanidins or condensed tannins). Tannins are water-soluble phenolic compounds with a molecular weight of 500–3000 Da that can precipitate alkaloids, gelatine, and other proteins. Proanthocyanidins form a considerable portion of the tannins found in wine and in particular contribute heavily to the colour and flavour of red wines. Proanthocyanidins are high-molecular-weight polymers formed from flavan-3-ol monomeric units. Several oligomers, dimers, trimers, tetramers, and pentamers, exist. Tetramers or greater of these flavonols are known as polymeric proanthocyanidins and the astringency of the molecule increases with size. Oligomeric proanthocyanidins are less astringent, bind less strongly to proteins, and are more soluble [2]. A new subfamily of condensed tannin with an unusual skeleton, named crown procyanidins, have been reported [3]. Furthermore, the sensation of astringency caused by tannins is a direct function of their mDP and galloylation percentage [4]. Anthocyanins are glucoside of anthocyanidins. Anthocyanins are differentiated by the degree of hydroxylation and methylation, and also by the nature of the Oses bound to the molecule. Anthocyanidin is the chromophore moiety of the pigment. Acetylglucoside and cinnamoylglucoside anthocyanins have lower perception thresholds than the glucoside fraction at concentrations found in wines [5]. Descriptors associated with these fractions were bitterness and astringency. Anthocyanins also make a sensory contribution to the perception of wine, correlated with the acetylation of molecules. The presence of C-glucosidic ellagitannins in wines and spirits is due to their presence in wood species such as Quercus petraea, Q. robur and Q. alba. The main C-glucosidic ellagitannins extracted by wines during ageing in oak barrels are continuously transformed through condensation, hydrolysis, and oxidation reactions. Phenolic compounds are known to have health benefits, such as a chemopreventive role toward cardiovascular, cancer, and degenerative diseases, as well as pathologies with inflammation. Therefore, wine and grape pomace constitute an abundant source of a wide range of polyphenols, and are sources of antioxidants for nutrition and health.

References

[1] Waterhouse AL, Teissedre P-L (1997) Levels of phenolics in California varietal wines, ACS Symposium Series 661, 12-23.

[2] Chira K, Lorrain B, Ky I, Teissedre P-L (2011). Molecules 16,1519-1532.

[3] Zeng L, Pons-Mercadé P, Richard T, Krisa S, Teissedre P-L, Jourdes M (2019) Molecules 24(10), 1915

[4] Ma W., Pierre Waffo-Teguo P., Jourdes M., Li H.,Teissedre P.L.  PLoS One, 2016 Aug 12;11(8):e0161095. doi: 10.1371/journal.pone.0161095. eCollection 2016.

[5] Paissoni M.A.; Waffo-Teguo P.; Ma W.; Jourdes M.; Rolle L.; Teissedre P.L.; (2018) Scientific Reports DOI: 10.1038/s41598-018-35355-x, Vol.8(1) 7098

Publication date: June 5, 2025

Type: Oral communication

Authors

Pierre-Louis Teissedre1,*

1 Université de Bordeaux, Institut des Sciences de la Vigne et du Vin, UMR OEnologie 1366, ISVV, 33140 Villenave-d’Ornon, France

Contact the author*

Keywords

grapes, wine, oak, phenolics, tannins, anthocyanins, ellagitannins, quality, colour, astringency, bitterness, health effects

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

The role of malolactic bacteria metabolism on the organoleptic qualities of wines

Lactic acid bacteria (LAB) are essential microorganisms in winemaking due to their role in malolactic fermentation (MLF) [1]. This process not only ensures the biological stabilization of wine through the decarboxylation of malic acid into lactic acid but also contributes to modifications in the chemical composition of the wine [2][3].

Development of novel drought-tolerant grape cultivars from Monastrell: enhancing anthocyanin and flavonol content under elevated temperatures

The ongoing challenge of climate change is driving the need for novel oenological approaches aimed at finding effective environmental solutions.

Highlighting a link between the structure of mannoproteins and their foaming properties in sparkling wines

Effervescence and foaming properties are the main visual characteristics assessed by the consumer during
sparkling wine tasting.

Physical-chemical characterization of Moscatel de Setúbal fortified wines from different vintages

Moscatel de Setúbal is a Portuguese fortified wine with Protected Designation of Origin (PDO Setúbal), made from Moscatel de Setúbal grape variety (Muscat of Alexandria) [1].

The impact of ethyl esters, monoterpenes and volatile thiols to the perception of tropical fruit aromas in white wines

Many varietal white wines have aroma qualities that incorporate various tropical fruit aromas. These tropical fruit aromas are found to be considered positive qualities of the wines with consumers having positive emotional responses [1].