terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Chemical and biochemical reactions, including grape and wine microorganism’s impact 9 Potential of native Uruguayan yeast strains for production of Tannat wine

Potential of native Uruguayan yeast strains for production of Tannat wine

Abstract

Must fermentation is a complex process influenced by various factors, especially microbiological activities. The characteristics and quality of the resulting wine are closely linked to the stages that unfold throughout this progression. Winemakers usually use pure cultures like Saccharomyces cerevisiae to ensure a reliable and complete process. Alternatively, the use of commercial wine yeasts is somewhat controversial, as it may lack certain desirable characteristics provided by natural fermentation. A key challenge is finding non-conventional yeasts that complete fermentation while enhancing a wine’s uniqueness, complexity, and appeal. In our previous studies, we isolated, identified, and conducted physiological and biochemical characterizations of indigenous yeasts from Tannat grapes in the Maldonado vineyard (1). Three strains demonstrated notable fermentation properties: Saccharomyces cerevisiae T193FS, Saturnispora diversa T191FS, and Starmerella bacillaris T193MS. In this study, we assessed the oenological potential of these strains at a semi-pilot scale during the vinification of a Tannat must with an expected ethanol content of 11-12%. All three native strains consumed around 98% of the must sugars, resulting in robust ethanol production in the range of 9-11%. Pilot-scale trials highlighted the strong fructophilic character of S. bacillaris, which left very low residual fructose levels (0.006 g/L compared to ≥0.01 g/L for the other species) while yielding lower ethanol (9%), a profile beneficial for crafting lower-alcohol wines.

Wines with native strains, stood out for presenting greater fruity notes, especially S. bacillaris, showed enhanced fruity notes like plum, raisins, and candied fruit, linked to higher ester, norisoprenoid, and terpene levels detected by GC-MS. The β-glucosidase activity of these strains was also investigated, as this enzyme enhances aromatic complexity by releasing aroma compounds from glycosidic precursors during fermentation. Given its notably high β-glucosidase activity under acidic conditions of S. diversa T191FS, it was subsequently evaluated as a pure starter in Muscat wine fermentation. Volatile compound analysis by GC-MS showed a significant increase in total terpenes compared to the commercial strain S. cerevisiae (145 vs. 45 ug/L, respectively). S. diversa stood out for its ability to release terpenic varietal aromas.

References

[1] Morera G, de Ovalle S, González-Pombo P. Prospection of indigenous yeasts from Uruguayan Tannat vineyards for oenological applications. Int Microbiol. 2022 Nov;25(4):733-744. doi: 10.1007/s10123-022-00257-6. Epub 2022 Jun 21. PMID: 35727473.

Publication date: June 4, 2025

Type: Poster

Authors

Paula González-Pombo1,*, Guillermo Morera1 and Stefani de Ovalle1

1 Área Bioquímica, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo-Uruguay

Contact the author*

Keywords

native-yeast, fermentation, wine, aroma

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Effect of ozone treatments in wine production of young and short-term aged white wines: destructive and non-destructive evaluation of main quality attributes

The main aim of WiSSaTech project (PRIN P2022LXY3A), supported by Italian Ministero dell’Università e della Ricerca and NextGenerationEU program, is to investigate eco-friendly and safe alternatives to sulphur dioxide (SO2) in wine production.

Physical-chemical characterization of Moscatel de Setúbal fortified wines from different vintages

Moscatel de Setúbal is a Portuguese fortified wine with Protected Designation of Origin (PDO Setúbal), made from Moscatel de Setúbal grape variety (Muscat of Alexandria) [1].

Towards 2D mapping of gaseous ethanol in the headspace of wine glasses by infrared laser spectrometry

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the chemical space perceived by the consumer in the glass headspace.

Integrated approach to grape stalks valorization: sustainable recovery of bioactive compounds and biofuel production

Grape stalks are a byproduct of the winemaking process and represent a valuable and inexpensive source of bioactive compounds. While their direct use in whole bunch fermentation is known, the majority of grape stalks are discarded, posing environmental and economic challenges.

New use of natural silk fiber as a fining agent in wines

Undesirable compounds in wine, like OTA, biogenic amines, and pesticide residues, can negatively affect its quality and pose health risks to consumers. In addition, an excess of tannins can lead to an unpleasant rise in astringency and bitterness, which makes tannins another target of reduction.