terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Development of novel drought-tolerant grape cultivars from Monastrell: enhancing anthocyanin and flavonol content under elevated temperatures

Development of novel drought-tolerant grape cultivars from Monastrell: enhancing anthocyanin and flavonol content under elevated temperatures

Abstract

The ongoing challenge of climate change is driving the need for novel oenological approaches aimed at finding effective environmental solutions. While warmer temperatures may benefit viticulture in cooler climates by reducing fungal infections, the impact on regions characterized by arid conditions is potentially harmful. These changes can significantly influence the quality of wines and their organoleptic profiles, making it essential to adapt both viticultural and winemaking practices to mitigate these effects.

Given the persistent nature of climate change, there is an urgent need to continuously explore and implement viticultural strategies that can alleviate its consequences. In this context, it has initiated a long-term breeding program aimed at developing grape varieties more resilient to climate change. Through targeted crosses involving the Monastrell variety and other cultivars such as Cabernet Sauvignon and Syrah, new grape varieties, namely MC16, MC80, and MS104, have been created.

The performance of these new varieties has been assessed over three consecutive seasons (2022–2024) under both strictly dry conditions and those supplemented with irrigation. This study focuses particularly on the macromolecules of interest—anthocyanins and flavonols—which play a critical role in determining the color, stability, and sensory properties of wine. Following the methodology outlined by Pérez-Porras et al. [1], the results indicate that the newly developed varieties exhibited significantly higher anthocyanin content than their parent varieties (Monastrell, Cabernet Sauvignon, and Syrah), with some varieties showing a two- to threefold increase, especially during the 2022 season. Moreover, it was observed that the highest anthocyanin concentrations were found in grapevines grown under rainfed conditions, as opposed to those subjected to deficit irrigation.

In contrast, the variations in flavonol concentrations were less pronounced than those observed for anthocyanins, suggesting that flavonol content might be influenced by other environmental factors or genetic aspects not yet fully understood.

In conclusion, the findings of this study offer valuable insights into the potential for developing grapevine varieties better suited to the challenges posed by climate change in arid and semi-arid regions. These results underscore the importance of key macromolecules, such as anthocyanins and flavonols, in shaping wine quality and highlight the potential of these new varieties as a critical tool for the wine industry to address the impacts of climate change.

References

[1] Pérez-Porras P, Gómez-Plaza E, Muñoz García R, et al (2022) Prefermentative grape microwave treatment as a tool for increasing red wine phenolic content and reduce maceration time. https://doi.org/10.3390/app12168164

Publication date: June 5, 2025

Type: Poster

Authors

Juan Daniel Moreno-Olivares1*, María José Giménez-Bañón1, Diego José Fernández-López1, Ana Cebrián-Pérez1, José Cayetano Gómez-Martínez1, María Isabel Quílez-Pérez1, Luis Javier Pérez-Prieto1, Juan Antonio Bleda-Sánchez1, Leonor Ruiz-García1, Rocío Gil-Muñoz1

1 Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), Spain

Contact the author*

Keywords

climate change, drought, Vitis vinifera, polyphenols

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Eliminating Brettanomyces and lactic acid bacteria in wine: the potential of Ultra-High Pressure Homogenization (UHPH)

Ultra-High Pressure Homogenization (UHPH) is an innovative technology that can be seamlessly integrated at various stages of winemaking. Its application helps minimize or even eliminate the need for sulphites and other antimicrobial or antioxidant treatments, offering a faster and more sustainable alternative.

Antioxidant activity of yeast peptides released during fermentation and autolysis in model conditions

Aging wine on lees benefits different wine sensory and technological properties including an enhanced resistance to oxidation. Several molecules released by yeast, such as membrane sterols and glutathione, have been previously proposed as key factors for this activity [1].

The role of malolactic bacteria metabolism on the organoleptic qualities of wines

Lactic acid bacteria (LAB) are essential microorganisms in winemaking due to their role in malolactic fermentation (MLF) [1]. This process not only ensures the biological stabilization of wine through the decarboxylation of malic acid into lactic acid but also contributes to modifications in the chemical composition of the wine [2][3].

Comparison of the principal production methods for alcohol-free wine based on analytical parameters

Production, demand, and brand awareness of dealcoholized wine (<0.5% v/v) is steadily increasing worldwide. However, there have been few studies to date investigating and comparing the different physical processes for dealcoholizing wine.

White wine lees: unlocking the relationship between chemical composition and antioxidant potential

The wine-making process generates numerous by-products at each stage (crushing, fermentation, ageing), including wine lees, which account for almost 25% of the total quantity.