terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Two dimensions, one mission: unlocking grape composition by GC × GC

Two dimensions, one mission: unlocking grape composition by GC × GC

Abstract

Aroma is one of the most important attributes that determine consumer’s perception of the sensory quality of wine and varietal typicity. The aroma of grapes consists of big diversity of volatile compounds, including esters, terpenic compounds, C13 norisoprenoids, C6 compounds, benzene derivatives, alcohols, aldehydes, among others. Given the complexity of the grape volatile profile and the trace concentrations of these compounds, employing advanced analytical techniques such as GC×GC-ToFMS is essential. This method enables efficient separation and precise detection of volatile compounds within the intricate grape matrix [1, 2].

This work aims to analyze the volatile composition of three different Portuguese white grape varieties (Terrantez, Encruzado and Malvasia Fina) using HS-SPME-GC×GC-ToFMS. To increase the efficiency of the SPME technique, a detailed optimization of all the steps of the sample preparation technique was carried out. The optimized conditions were 4 g of grapes, 2 g of NaCl, and 2 mL of H2O. Additionally, the extraction conditions using a carboxen/divinylbenzene/polydimethylsiloxane fiber were also optimized and performing the extraction for 40 minutes at 60 ºC allow to identify more volatile compounds.

As a result, it was possible to identify sixty free compounds, including four C6 compounds, three benzenoids, twenty-four monoterpenes, twenty-four sesquiterpenes and five C13 norisoprenoids. The results showed that there are some compounds in only one variety, for example, β-copaene is only present in the Encruzado variety, as well as trans– pyran linalool oxide in the Malvasia Fina variety and, finally, in the Encruzado variety, α-thujone. Compounds such as D-verbenone, δ-elemene, cis-thujopsene, α-muurolene, cubenol, α-cadinene and δ-selinene were only found in the Terrantez and Encruzado varieties, while the compound 5-hexen-2-ol was only found in the Malvasia Fina and Terrantez varieties. Comparing the varieties, Malvasia Fina showed the highest relative total area of C6 compounds, while Terrantez showed the highest relative total area for benzenoids. In addition, Encruzado revealed the highest relative total area for monoterpenes. Linear discriminant analysis (LDA) further revealed clear differences in the volatile composition between the studied white varieties.

HS-SPME combined with GC×GC-ToFMS provides a suitable and sustainable approach for determining the volatile signature of grapes from different varieties.

Acknowledgement

This research was funded by “Vine&Wine-Driving Sustainable Growth Through Smart Innovation” project (sub-project-BioGrapeSustain), “Mobilizing Agendas for Business Innovation” under the Recovery and Resilience Program. Authors also aknowledges MED https://doi.org/10.54499/UIDB/05183/2020 and CHANGE https://doi.org/10.54499/LA/P/0121/2020.

References

[1] Fonseca, D., Martins, N., Garcia, R., Cabrita, M. J. (2024). Molecules, 29(9), 1989-2005.

[2] Fonseca, D., Martins, N., Garcia, R., Cabrita, M. J. (2025). LWT, 215, 117314-117322.

Publication date: June 5, 2025

Type: Poster

Authors

Nuno Martins1, Daniela Fonseca2, Raquel Garcia1, Pedro Rodrigues3, Vanda Pedroso4, António M. Jordão3, and Maria João Cabrita1,*

1 Mediterranean Institute for Agriculture, Environment and Development & Global Change and Sustainability Institute, University of Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal.
2 Mediterranean Institute for Agriculture, Environment and Development & Institute of Research and Advanced Training, University of Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal.
3 Polytechnic University of Viseu, Agrarian School (CERNAS Research Centre), 3500-606 Viseu, Portugal.
4 Dão Wine Studies Center – Nelas Innovation Hub (CCDRC), 3520 Nelas, Portugal.

Contact the author*

Keywords

GC × GC-ToFMS, volatile composition, free compounds, white varieties

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Exploring the use of high-power ultrasound in white and rosé winemaking

Since the approval in 2019 of the use of high-power ultrasound (US) in winemaking to support extractive processes from grape to must, the study of this technology in red winemaking has increased significantly, with laboratory and semi-industrial scale studies.

Smoke exposure effects on red wines: how much is too much?

Increasing wildfire frequency in the United States has led to the indirect impact of smoke in vineyards, affecting grape quality and wine sensory attributes, commonly called “smoke taint”.

Solid Rectified Concentrated grape Must (SRCM) in sparkling wines production: studying the sensory impact of an innovative sugar substrate

The production of sparkling wines requires sugars for the second fermentation. The Solid Rectified Concentrated Must (SRCM) is a water free crystalline form of grape sugar, offering a purer, more stable, and easier-to-use alternative to the liquid Rectified Concentrated Must (RCM).

Sensory quality of wines as a trait in MAS grape vine breeding – sensory insights from multiple vintages in a F1 breeding population

In the context of the three global crises of global warming, loss of biodiversity and environmental pollution, current agricultural practices need to be reconsidered [1]. Viticulture in particular can contribute to this by optimising plant protection [2].

Identification of novel aromatic precursors in winemaking grapes using an optimized fractionation and UHPLC-MS analysis

Winemaking grapes contain a diverse array of non-volatile precursors that become noticeable only after hydrolysis reactions or molecular rearrangements, during which aroma compounds are generated and released [1]. Among these, glycosidic precursors are the most abundant and play a key role in the development of wine aroma [2].