terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Sensory properties: psychophysics, experimental economy, connections with neurosciences 9 Unveiling the chemical headspace of sparkling wine glasses by laser spectroscopy

Unveiling the chemical headspace of sparkling wine glasses by laser spectroscopy

Abstract

Right after serving a sparkling wine into a glass, thousands of rising and bursting bubbles convey gas-phase CO2 and volatile organic compounds (VOCs) in the headspace above the champagne surface, thus progressively modifying the gaseous chemical space perceived by the consumer [1]. Champagne and other traditional method sparkling wines being complex water/ethanol mixtures (with typically 12-13% ethanol by volume), gaseous ethanol is therefore undoubtedly the most abundant VOC in the glass headspace [1]. Yet, both gaseous ethanol and CO2 are known to have a multimodal influence on wine’s perception [2]. As their abundance increases, these two gaseous species stimulate the human trigeminal system, leading to the so-called carbonic bite (induced by excess gaseous CO2), while gaseous ethanol results in a tingling/burning sensation [2,3]. Monitoring simultaneously gaseous CO2 and ethanol (in space and time) in the headspace of sparkling wine glasses is therefore crucial to better understand the neuro-physicochemical mechanisms responsible for aroma release and flavour perception during sparkling wine tasting.

Over the past decade, a diode laser infrared spectrometer has been developed and progressively upgraded in our group to accurately monitor gaseous CO2 through the headspace of champagne glasses [4]. After the addition of a multipath system dedicated to the mapping of CO2 throughout the glass headspace [5,6], and the design of an optomechanical prototype dedicated to the replication of the human gesture of swirling wine [7], the spectrometer has recently been once again upgraded to monitor gaseous ethanol thanks to the recent interband cascade laser (ICL) technology [8]. From the start of sparkling wine serving, and during the next minutes following, kind of spatial-, temperature-, and glass shape-dependent gas-phase CO2 and ethanol footprints were revealed in the headspace of glasses. It is noteworthy to mention that accurately quantifying gaseous ethanol in the headspace of wine glasses is a first step towards quantifying the myriads of VOCs responsible for the wine’s bouquet, which also paves the way for a better understanding of the role of the glass and overall tasting conditions in the world of wine and spirits in the broad sense.

References

[1] Liger-Belair, G., & Cilindre, C. (2021). Annual Review of Analytical Chemistry, 14, 21–46.

[2] Ickes, C. M., & Cadwallader, K. R. (2017). Chemosensory Perception, 10, 119–134.

[3] Cain, W. S., & Murphy, C. L. (1980). Nature, 284, 255–257.

[4] Moriaux, A. L., Vallon, R., Cilindre, C., Parvitte, B., Liger-Belair, G., & Zeninari, V. (2018). Sensors and Actuators, B: Chemical, 257, 745–752.

[5] Moriaux, A.-L., Vallon, R., Lecasse, F., Chauvin, N., Parvitte, B., Zéninari, V., Liger-Belair, G., & Cilindre, C. (2021). Journal of Agricultural and Food Chemistry, 69, 2262–2270.

[6] Alfonso, V., Lecasse, F., Vallon, R., Cilindre, C., Parvitte, B., Zeninari, V., & Liger-Belair, G. (2024). Œno One, 58(2).

[7] Lecasse, F., Vallon, R., Polak, F., Cilindre, C., Parvitte, B., Liger-Belair, G. & Zéninari, V. (2022). Sensors, 22, 5764.

[8] Lecasse, F., Vallon, R., Jacquemin, C., Alfonso, V., Cilindre, C., Parvitte, B., Zéninari, V., & Liger-Belair, G. (2025). ACS Sensors, under review

Publication date: June 4, 2025

Type: Poster

Authors

Florian Lecasse1,*, Raphaël Vallon1, Clément Jacquemin1,2, Vincent Alfonso1, Clara Cilindre1, Bertrand Parvitte1, Virginie Zeninari1 and Gérard Liger-Belair1

1 GSMA, UMR CNRS 7331, Université de Reims Champagne-Ardenne, Reims, France
2 MirSense, 1 rue Jean Rostand, Campus Eiffel, 91400 Orsay, France

Contact the author*

Keywords

sparkling wines, Champagne, gaseous ethanol, CO2, spectroscopy, interband cascade laser

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Investigating winemaking techniques for resistant varieties: the impact of prefermentative steps on must quality

Resistant grape varieties are gaining interest in viticulture due to their resistance to diseases, allowing to drastically reduces pesticides in viticulture [1].

Exploiting the diversity in spent yeast for its valorisation towards producing yeast-derived processing aids

In view of sustainability and zero-waste initiatives, the valorisation of sidestreams is a key emerging topic in the wine industry.

Unveiling the secrets of catechin: insights from NMR spectroscopy

Catechins, a class of flavonoids found in foods and beverages such as wine and tea, exhibit potent antioxidant properties that contribute to various health benefits.[1]

Enhancing Monastrell wine quality in a climate change scenario: the role of cation exchange resins in addressing acidity challenges

Climate change significantly impacts vine and grape physiology, leading to changes in wine composition, including reduced titratable acidity, elevated ethanol content, and higher pH levels [1].

Evaluating the effectiveness of alginic acid, sodium carboxymethylcellulose, and potassium polyaspartate in preventing calcium tartrate instability in wines

Calcium-induced instabilities present a major challenge in bottled wines, with calcium tartrate (CaT) precipitation becoming increasingly common due to rising calcium levels in grape must, largely driven by climate change. Although CaT is an insoluble salt, its instability— although less frequent than potassium hydrogen tartrate (KHT) precipitation—is more difficult to predict and control, as it develops gradually over time.