terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Identification of novel aromatic precursors in winemaking grapes using an optimized fractionation and UHPLC-MS analysis

Identification of novel aromatic precursors in winemaking grapes using an optimized fractionation and UHPLC-MS analysis

Abstract

Winemaking grapes contain a diverse array of non-volatile precursors that become noticeable only after hydrolysis reactions or molecular rearrangements, during which aroma compounds are generated and released [1]. Among these, glycosidic precursors are the most abundant and play a key role in the development of wine aroma [2]. Although direct determination of these molecules is possible using UHPLC-MS [3], it remains challenging due to the lack of commercial standards, the wide variety of precursors associated with the same aroma, and their typically low concentrations. A deeper understanding of the nature and behaviour of these molecules during the different stages of the winemaking process would allow for the optimisation of certain stages, such as maceration time or enzyme addition, among others. This study aims to identify the largest possible number of aroma precursors through an optimized fractionation approach [4], involving a sequence of semi-preparative chromatographies, first by size exclusion and then by normal phase fractionation. This method is designed to reduce the excessive complexity of grape samples in UHPLC-MS analyses, thereby facilitating precursor identification.

For this purpose, a phenolic-aromatic fraction from Garnacha grapes was subjected to silica gel fractionation, improving a previously established protocol by increasing the sample size and adjusting the polarity of the mobile phases. A total of 96 fractions were obtained, 92 of which released aroma upon hydrolysis. These fractions were analysed using SPME-GC-MS to identify where the precursors of key varietal aromas -such as terpenes, norisoprenoids, phenols, vanillins, and cinnamates- were located. The hydrolysates from 55 of these fractions contained aroma molecules of interest and were subsequently analysed by UHPLC-MS to detect potential precursors. The identification process was based on three criteria: a) the expected molecular mass of the precursor, b) the presence of fragments in the MS/MS spectrum that were consistent with the precursor’s structure, and c) the correlation between the precursor signal in UHPLC-MS and the corresponding aroma signal in GC-MS for the same fractions.

As a result, 175 precursors were identified, including 67 novel compounds not previously reported in the literature. Among these, 54 precursors were confirmed based on all the three identification criteria. The majority of the identified precursors were disaccharides (79) and monosaccharides (63), with a smaller proportion of trisaccharides (33). Noteworthy among them were 54 terpene precursors, 24 phenol precursors, 22 vanillin derivatives, and 14 cinnamate derivatives. This represents both a quantitative and qualitative advancement in the evaluation of the potential aromatic quality of winemaking grapes using UHPLC-MS. Furthermore, this approach would be useful for proposing new winemaking techniques or for developing new grape-derived products. It will also be essential for optimising grape quality and mitigating some effects of climate change.

References

[1] Ferreira, V., and Lopez, R. (2019). Biomolecules. 9(12), 818.

[2] Liu, J., Zhu, X.-L., Ullah, N., and Tao, Y.-S. (2017). Journal of Food Science. 82(2), 248-259.

[3] Caffrey, A., Lerno, L., Zweigenbaum, J., and Ebeler, S. E. (2020). Journal of Agricultural and Food Chemistry. 68(12), 3817-3833.

[4] Sánchez-Acevedo, E. (2024). Doctoral Thesis. University of Zaragoza, Zaragoza, Spain.

Publication date: June 4, 2025

Type: Flash talk

Authors

Belén González-Martínez1,*, Arancha de-la-Fuente-Blanco1, Vicente Ferreira1

1 Laboratorio de Análisis del Aroma y Enología (LAAE), Department of Analytical Chemistry, Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), Associate unit to Instituto de las Ciencias de la Vid y el Vino (ICVV) (UR-CSIC-GR), c/ Pedro Cerbuna 12, 50009 Zaragoza, Spain

Contact the author*

Keywords

aroma precursors, acid hydrolysis, phenolic aromatic fraction, glycosides

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Integrated approach to grape stalks valorization: sustainable recovery of bioactive compounds and biofuel production

Grape stalks are a byproduct of the winemaking process and represent a valuable and inexpensive source of bioactive compounds. While their direct use in whole bunch fermentation is known, the majority of grape stalks are discarded, posing environmental and economic challenges.

Geographical indication “Brandy Italiano”: study on the influence of wood barrel toasting and natural seasoning on endogenous and wood-derived compounds of aged distillates

The European geographical indication (GI) Brandy Italiano is exclusively reserved to brandy obtained in Italy from the distillation of wine from grapes grown and vinified in the national territory [1].

Unveiling the fungal diversity of Falanghina grapes and the role of autochthonous Saccharomyces and non-Saccharomyces yeasts in wine fermentation

Falanghina, a typical wine from the Sannio (Campania region, Italy), hosts a complex fungal microbiota that significantly influences both fermentation dynamics and sensory characteristics.

Evolution of grapeseed composition during maturation and characterization of its impact on wine compound using molecular networks

Usually the winemaker consider the grapeberry maturity as an actor of the wine quality. Grape seed are frequently used as a marker to assess the grape maturity. The first aim of this study is to obtain a better understanding of the impact of grape seed maturity on the grape seed and grape berry composition.

Further insight on the use of yeast derivative products as alcoholic fermentation enhancers

Issues that can arise during the alcoholic fermentation are frequently attributed to imbalances or deficiencies in the nutrient composition of the fermentation medium.