terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Winemaking processes and oenological practices 9 Enhancing Monastrell wine quality in a climate change scenario: the role of cation exchange resins in addressing acidity challenges

Enhancing Monastrell wine quality in a climate change scenario: the role of cation exchange resins in addressing acidity challenges

Abstract

Climate change significantly impacts vine and grape physiology, leading to changes in wine composition, including reduced titratable acidity, elevated ethanol content, and higher pH levels [1]. These effects are particularly problematic in arid and semi-arid regions such as the Mediterranean areas, where high summer temperatures and low rainfall accelerate the degradation of grape acids [2]. This results in wines lacking sufficient acidity to maintain the desired level of freshness and quality. To address this issue, the wine industry employs various techniques to reduce pH and enhance acidity, such as acid addition, ion exchange, blending with high-acidity wines, and biological methods. Among these, cation exchange resins stands out as one of the most widely used and effective approaches. For that, this study explores the effect of treating must with cation exchange resins on the composition and quality of Monastrell red wines, comparing them with wines adjusted to the same pH with tartaric acid and untreated control wines. The results showed that treating part of the must with cation exchange resins (20% and 30%) significantly lowed pH values and increased total acidity compared to the control must. This trend was also observed in wines treated with tartaric acid. The resulting wines showed no significant differences on the concentration of phenolic compounds but must acidification favored the color quality associated to an increase of the color intensity and a decrease in the tone values. Moreover, sensory analysis showed tasters preferred treated wines, particularly those made with must acidified with cation exchange resins, which were perceived as fresher in the mouth. Therefore, must treatment with cation exchange resins may be a good method for lowering the pH and increasing the acidity of Monastrell red wines solving the problem of the significant decrease in acidity that grapes are suffering due to the temperature increase in the semi-arid regions associated to climate change.

References

[1] Just-Borràs, A., Pons-Mercadé, P., Gombau, J., Giménez, P., Vilomara, G., Conde, M., Zamora, F. (2022). OENO One, 56(2), 179-192.

[2] Sweetman, C., Sadras, V. O., Hancock, R. D., Soole, K. L., Ford, C. (2014). J. Exp. Bot. 65(20), 5975-5988.

Publication date: June 4, 2025

Type: Poster

Authors

Ana Leticia Pérez Mendoza1, Alejandro Martínez-Moreno1, Encarna Gómez-Plaza1, Paula Pérez Porras1, Paola Sánchez Bravo1, Ricardo Jurado Fuentes2, Ana Belén Bautista-Ortín1,*

1 Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain.
2 Agrovin S.A., Avenida de los Vinos s/n, 13600 Alcázar de San Juan, Ciudad Real, España

Contact the author*

Keywords

titratable acidity, pH, cationic exchange, climate change, wine color

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

UV-VIS-NIR spectroscopy as a tool for predicting volatile compounds in grape must

The wine sector is one of the most significant industries worldwide, with Spain being a leading country in wine production and export. A key factor in wine quality is its aroma, which is directly influenced by the volatile compounds present in the grape, with terpenes being among the most significant contributors.

Evaluation of consumer behaviour, acceptance and willingness to return of faulty wines

The analysis of consumer attitudes towards wine, especially towards wines perceived as faulty, is an aspect that requires more research than has been carried out so far [1]. This study aims to analyse consumer behaviour in situations involving the consumption of faulty wines and to assess the level of acceptance of such wines.

Biosynthetic evolution of galloilated polyphenols in Tannat grapes during ripening, potential applications of grape thinning

Galloylated flavan-3-ols are a class of polyphenolic compounds present in various plants, including grape seeds. These compounds are formed through the condensation of flavan-3-ols, such as catechins, although the precise mechanism by which gallic acid is incorporated into the molecule remains unclear.

Photodegradation of retsina wine: does pine resin protect against light-induced changes?

Retsina is a wine deeply rooted in Greek tradition but often misunderstood, largely due to the poor quality associated with past production. Historically, pine resin was used to seal wine transport containers, and over time, its distinctive aroma led to its intentional incorporation into winemaking.

Portable NIR spectroscopy for nutrient profiling in rootstock and scion material: enhancing decision-making in the grafting industry

The success of grafting in viticulture is deeply influenced by the nutrient composition of both rootstock and scion
materials. Key components such as nitrogen and carbohydrates play a crucial role in graft compatibility, establishment,
and overall plant vigor [1].