terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Modulation of the tannic structure of Tannat wines through maceration techniques: cross analytical and sensory study

Modulation of the tannic structure of Tannat wines through maceration techniques: cross analytical and sensory study

Abstract

The Tannat grape, native to the foothills of the Pyrenees in France, is known for producing wines with intense colour, exceptional tannic structure, and remarkable aging potential. These distinctive characteristics are attributed to its unique genome, making Tannat one of the grape varieties with the highest tannins concentration. While this contributes to the variety’s uniqueness, it also presents a challenge for winemakers, who must carefully manage maceration processes to avoid producing wines with excessively harsh tannic structures.

In response to this challenge, a study was conducted in Madiran during the 2024 harvest focusing on the vinification of a Tannat plot. The experiment was designed at the 4,6 hl scale, with three distinct maceration protocols (72h pre-fermentation maceration at 17°C (PFM), 5 days maceration at 20°C (MRac) and conventional 14 days maceration at 20°C (MT)). Throughout the vinification process, these three modalities were closely monitored, and physicochemical parameters were measured using standard methods. The Total Polyphenol Index value (TPI) was used as the determining factor to stop maceration for the three processes (20, 40, and 60 for PFM, MRac, and MT, respectively).

Following vinification, the macromolecular structure of the wines was analysed using Asymmetrical Flow Field-Flow Fractionation (AF4) [1]. The resulting fractograms clearly revealed distinct profiles corresponding to each maceration treatment, with a notable correlation between the spectra and TPI values [2]. A sensory analysis based on the TCATA method [3], allowed an expert panel to successfully differentiate the three treatments based on their astringency levels and to identify specific descriptors that characterized the perception of astringency for each modality.

These initial findings form the basis for a broader study on the macromolecules responsible for astringency. To better manage their tannic structure, the next phase of this research will explore the relationship between grape quality, vinification techniques, and the molecular compounds that contribute to the astringency of Tannat wines from Madiran.

References

[1] Marassi, V., Marangon, M., Zattoni, A., Vincenzi, S., Versari, A., Reschiglian, P., et al (2021). 433 Characterization of red wine native colloids by asymmetrical flow field-flow fractionation with 434 online multidetection. Food Hydrocolloids, 110, 106204. 435

[2] Pascotto, K., Leriche, C., Caille, S., Violleau, F., Boulet, J.-C., Geffroy, O., Levasseur, Garcia, C., & Cheynier, V. (2021). Study of the relationship between red wine colloidal fraction and astringency by asymmetrical flow field-flow fractionation coupled with multidetection. Food Chemistry, 361.

[3] Castura, J. C., Antúnez, L., Giménez, A., & Ares, G. (2016). Temporal Check-All-That-Apply (TCATA): A novel dynamic method for characterizing products. Food Quality and Preference, 47, 79–90.

Publication date: June 4, 2025

Type: Poster

Authors

Laura Lescot1,2,3,4,*, Elodie Gassiolle2, Fréderic Violleau1,3 and Marianne Gosset4

1 Plateforme TFFFC, Université de Toulouse, INP-PURPAN, 75 Voie du Toec, 31076 Toulouse, France
2 Plaimont R&D, 99 Route de Corneillan, 32400 Saint-Mont, France
3 Laboratoire de Chimie Agro-industrielle, LCA, Université de Toulouse, INRA, 4 Allée Emile Monso, 31000 Toulouse, France
4 Département sciences de l’agroalimentaire et de la nutrition, Université de Toulouse, INP-PURPAN, 75 Voie du Toec, 31076 Toulouse, France

Contact the author*

Keywords

Asymmetrical Flow Field-Flow Fractionation, macromolecules, red wine, astringency, TCATA

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Aroma typicity of Timorasso wines: influence of ageing on volatile organic compounds and sensory descriptors

‘Timorasso’ is an autochthonous white grape variety from southern Piedmont (Italy) used for producing wines in the Colli Tortonesi product designation of origin (PDO). Over the last decade, there has been a notable rise in its production, due to the increased interest of wine enthusiasts who prized its wine distinctive ageing notes [1].

Impact of fining agents on Swiss Pinot noir red wines

In the context of climate change, excessive bitterness and astringency in wines have become increasingly prevalent. While variety selection and viticultural practices offer long-term solutions, they require considerable time before yielding practical results. In contrast, fining remains an accessible and immediate tool for winemakers.

Study of the fruity aroma of red wines through perceptual interactions among volatile compounds in the context of climate change for the Bordeaux vineyard

The fruity aroma of red wines is described by a wide range of descriptors, ranging from fresh fruits to ripe and jammy fruits, to candied fruits and prunes notes [1]. The fruity quality of a red wine is characterized by notes of fresh and jammy red- and black-berry fruits.

Gas Chromatography-Olfactometry (GCO) screening of odorant compounds associated with the tails-off flavour in wine distillates

The development of off-flavours in wine distillates, particularly those associated with the tails fraction, is a key issue in the production of high-quality spirits.

Managing extraction of colour, tannin and methoxypyrazines in Pinot noir grapes treated by leaf removal

Managing extraction of tannins and green aroma compounds attributed from methoxypyrazines in winemaking is crucial for producing high quality Pinot noir wine. This study1 investigated the impact of leaf removal on concentrations of anthocyanins, tannins, and methoxypyrazines in Pinot noir grapes and resultant wines.