How can yeast modulate Divona’s aromatic profile?

Abstract

Volatile thiols play a key role in the aromatic expression of white wines, contributing to notes such as passion fruit, grapefruit, and herbal nuances [1]. These compounds, present as non-volatile precursors in grapes, require enzymatic activation to be released and realize their aromatic potential. The enzymatic activity of yeast during fermentation influences the release and transformation of thiol precursors, thereby modulating their final concentration in wine [2]. Divona is a new Swiss grape variety with quantitative trait loci for resistance to fungi: Rpv10, Rpv 3.3 (mildew), Ren3, Ren9 (powdery mildew), Rgb1 (black rot) and average susceptibility to grey rot (Botrytis cinerea) [3]. It produces wines with a fruity bouquet of exotic fruit and citrus, with occasional floral and mineral notes. The aim of this work is to see how the use of thiol-releasing yeasts can influence the composition and aromatic profile of Divona wines. In 2020, 2 thiol- revealing yeasts were compared with a control yeast on a Divona must from the experimental vineyard in Pully, VD, Switzerland. The presence of aromatic precursors in the must was measured by LC-MS. The wines were vinified at the Changins experimental winery, VD, Switzerland. Classical wine parameters were analysed by WineScan©, FOSS, thiols were measured by UHPLC-MS/MS and terpenes by GC-MS. The wines were also subjected to a sensory profile analysis. The results obtained with Divona were compared with similar trials on Sauvignon blanc carried out at the Wädenswil experimental estate. The results show that the Divona grape variety has thiol precursors in the must and the use of special yeasts can influence the final quantity of 3MH. The quantity of 4MMP is very low compared with the quantities found in Sauvignon blanc wines. Terpene concentrations are below the perception threshold. The sensory analyses showed that the general appreciation is not linked solely to the quantity of 3MH in the wine and takes into account the overall balance of the wine. The use of such thiol-releasing yeasts can influence the aromatic expression of the new Divona grape variety. Improving our knowledge of resistant grape varieties such as Divona will help to integrate them into the wine industry.

References

[1] Roland, A., et al., Varietal thiols in wine: discovery, analysis and applications. Chemical reviews, 2011. 111(11): p. 7355-7376.

[2] Swiegers, J.H., et al., The influence of yeast on the aroma of Sauvignon Blanc wine. Food Microbiology, 2009. 26(2): p. 204-11.

[3] Spring J.-L., et al., Divona, nouveau cépage blanc résistant aux principales maladies de la vigne sélectionné à Agroscope Revue suisse de viticulture arboriculture horticulture, 2018. 50(5): p. 286-296.

Publication date: June 4, 2025

Type: Flash talk

Authors

Marie Blackford1,2,*, Agnes Dienes-Nagy1, Andreas Bühlmann3, Thierry Wins3, Marilyn Cléroux2, Kathleen Makie-Haas3, Gilles Bourdin1

1 Agroscope, 1260 Nyon, Switzerland
2 Changins, HES-SO University of Applied Sciences and Arts Western Switzerland, College for Viticulture and Enology, Nyon, Switzerland
3 Agroscope, 8820 Wädenswil, Switzerland

Contact the author*

Keywords

resistant grape variety, yeast, thiol, aromatic profile

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Assessing the potential of fermentative skin contact in white winemaking on phenolic, colour, and sensory traits

Fermentative maceration in white wine production, involving extended contact with grape skins and seeds, has gained interest in recent years. The impact of this winemaking technique on wine composition and sensory properties remains underexplored.

Evaluation of the composition of pomace from grapes grown in the slopes of the Popocatépetl volcano (Puebla, Mexico). Feasibility of its application for obtaining functional foods

Grape pomace is the main byproduct generated during wine production and is primarily composed of skins and seeds, which are obtained after the pressing stage [1]. This byproduct retains a significant amount of nutrients, such as fiber, phenolic compounds, unsaturated fatty acids, vitamins, and minerals.

The economic impact of drones on viticultural processes

Nowadays there are many challenges facing both winegrowers and workers, in other agricultural practices, related to the growing demand for food products, the safety and quality of these products, and the preservation of the environment…

A facile and robust method for the quantification of polyphenols in red wine via NMR

Nuclear magnetic resonance spectroscopy (NMR) is a high-tech analytical method that recently found its way into the field of wine analysis with special focus on wine authentication.

Quantification of quercetin and quercetin-3-glucoside in Nebbiolo red wines

Quercetin-3-glucoside, a grape flavonol defence metabolite, is extracted during winemaking and may undergo subsequent degradation in wines. Hydrolysation reactions lead to the formation of the aglycone quercetin, which presents limited solubility in the wine matrix and can induce visible precipitations.