terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Chemical and biochemical reactions, including grape and wine microorganism’s impact 9 Metabolomic fingerprint changes during the alcoholic fermentation at industrial level of Muscat of Alexandria grape must

Metabolomic fingerprint changes during the alcoholic fermentation at industrial level of Muscat of Alexandria grape must

Abstract

Muscat of Alexandria is one of the oldest cultivars still existing, globally recognized for its distinctive aroma, and the primary grape variety cultivated in the Greek Island of Lemnos, yielding various white wines with designated origins. On the other hand, understating the changes occurring during alcoholic fermentation is of paramount importance in wine science and wine making, and untargeted metabolomics, which enable the registration of thousands of metabolites in a single analysis, could serve as a valuable tool for the comprehensive study of these changes.

The aim of this study was to track the metabolomic profile of Muscat of Alexandria grape must during the industrial-level alcoholic fermentation. For this purpose, numerous samples were collected from eleven tanks originating from three wineries on Lemnos Island across two vintages (2019 and 2020) and analysed using ultra-high pressure liquid chromatography coupled to time-of-flight mass spectrometry in both positive and negative electrospray ionization modes (UPLC-QTOF-MS). The data processing and analysis divided the annotated metabolites into different categories based on the behaviour. Between others, the tentative biomarkers included sugars, organics acids, vitamins, amino acids, peptides, flavonoids, nucleosides and terpene glycosides. Notably, small peptides exhibited analogous trends with amino acids, indicating rapid consumption similar to the amino acids. This peptides consumption potentially elucidated the observed proline increase, which is not preferrable by the yeasts. Additionally, some peptides exhibited increased concentrations towards the end of fermentation. Furthermore, the hydrolysis of terpenes and phenolic glycosidic bonds, alongside the release of nucleic acid building blocks into the must during fermentation, were highlighted. Overall, this comprehensive analysis enhances understanding of how alcoholic fermentation influences wine quality under realistic conditions.

References

[1] Marinaki, M.; Mouskeftara, T.; Arapitsas, P.; Zinoviadou, K. G.; Theodoridis, G. (2023) Molecules, 28 (12), 4653.

[2] Marinaki, M.; Sampsonidis, I.; Lioupi, A.; Arapitsas, P.; Thomaidis, N.; Zinoviadou, K.; Theodoridis, G. (2023) Talanta, 253, 123987.

Publication date: June 4, 2025

Type: Poster

Authors

Maria Marinaki1,2,3, Panagiotis Arapitsas4,5,*, Christina Virgiliou2,3,6, Georgios Theodorodis1,2,3

1 Laboratory of Analytical Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
2 BiomicAUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
3 FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
4 Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, 12243 Athens, Greece
5 Research and Innovation Centre, Fondazione Edmund Mach, 38010 Trento, Italy
6 School of Chemical Engineering, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece

Contact the author*

Keywords

metabolomics, grape must, Muscat of Alexandria, alcoholic fermentation

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Evolution and sensory contribution of ethyl acetate in sweet wines

Ethyl acetate (EtOAc) is the main ester present in all wines, generally produced by yeasts during alcoholic fermentation and sometimes by bacteria during barrel ageing. Its odor is characterized by solvent notes, which give wines their acescent note [1].

Exploring the physico-chemical modification of grape seed extracts to improve their clarifying effect in red wine

During winemaking, some byproducts are obtained, such as grape pomace, which represent 13% of winery byproducts.

Development of novel drought-tolerant grape cultivars from Monastrell: enhancing anthocyanin and flavonol content under elevated temperatures

The ongoing challenge of climate change is driving the need for novel oenological approaches aimed at finding effective environmental solutions.

Smoke exposure effects on red wines: how much is too much?

Increasing wildfire frequency in the United States has led to the indirect impact of smoke in vineyards, affecting grape quality and wine sensory attributes, commonly called “smoke taint”.

UV-VIS-NIR spectroscopy as a tool for predicting volatile compounds in grape must

The wine sector is one of the most significant industries worldwide, with Spain being a leading country in wine production and export. A key factor in wine quality is its aroma, which is directly influenced by the volatile compounds present in the grape, with terpenes being among the most significant contributors.