terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Chemical and biochemical reactions, including grape and wine microorganism’s impact 9 Metabolomic fingerprint changes during the alcoholic fermentation at industrial level of Muscat of Alexandria grape must

Metabolomic fingerprint changes during the alcoholic fermentation at industrial level of Muscat of Alexandria grape must

Abstract

Muscat of Alexandria is one of the oldest cultivars still existing, globally recognized for its distinctive aroma, and the primary grape variety cultivated in the Greek Island of Lemnos, yielding various white wines with designated origins. On the other hand, understating the changes occurring during alcoholic fermentation is of paramount importance in wine science and wine making, and untargeted metabolomics, which enable the registration of thousands of metabolites in a single analysis, could serve as a valuable tool for the comprehensive study of these changes.

The aim of this study was to track the metabolomic profile of Muscat of Alexandria grape must during the industrial-level alcoholic fermentation. For this purpose, numerous samples were collected from eleven tanks originating from three wineries on Lemnos Island across two vintages (2019 and 2020) and analysed using ultra-high pressure liquid chromatography coupled to time-of-flight mass spectrometry in both positive and negative electrospray ionization modes (UPLC-QTOF-MS). The data processing and analysis divided the annotated metabolites into different categories based on the behaviour. Between others, the tentative biomarkers included sugars, organics acids, vitamins, amino acids, peptides, flavonoids, nucleosides and terpene glycosides. Notably, small peptides exhibited analogous trends with amino acids, indicating rapid consumption similar to the amino acids. This peptides consumption potentially elucidated the observed proline increase, which is not preferrable by the yeasts. Additionally, some peptides exhibited increased concentrations towards the end of fermentation. Furthermore, the hydrolysis of terpenes and phenolic glycosidic bonds, alongside the release of nucleic acid building blocks into the must during fermentation, were highlighted. Overall, this comprehensive analysis enhances understanding of how alcoholic fermentation influences wine quality under realistic conditions.

References

[1] Marinaki, M.; Mouskeftara, T.; Arapitsas, P.; Zinoviadou, K. G.; Theodoridis, G. (2023) Molecules, 28 (12), 4653.

[2] Marinaki, M.; Sampsonidis, I.; Lioupi, A.; Arapitsas, P.; Thomaidis, N.; Zinoviadou, K.; Theodoridis, G. (2023) Talanta, 253, 123987.

Publication date: June 4, 2025

Type: Flash talk

Authors

Maria Marinaki1,2,3, Panagiotis Arapitsas4,5,*, Christina Virgiliou2,3,6, Georgios Theodorodis1,2,3

1 Laboratory of Analytical Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
2 BiomicAUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
3 FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001 Thessaloniki, Greece
4 Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, 12243 Athens, Greece
5 Research and Innovation Centre, Fondazione Edmund Mach, 38010 Trento, Italy
6 School of Chemical Engineering, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece

Contact the author*

Keywords

metabolomics, grape must, Muscat of Alexandria, alcoholic fermentation

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Effect of must temperature and aspergillopepsin-I supplementation on PR-protein derived peptides

Protein instability in wines is challenging, and despite many efforts to find satisfactory alternatives to bentonite, both in terms of stability and quality, the solutions are limited in the wine industry.

Unraveling the role of grape cell wall in shaping the fermentation rate, the polyphenolic profile and quality of red wines from disease-resistant and drought-tolerant grapes in Occitanie varietal selection

Climate change and an evolving environmental and societal context call for the exploration of disease-resistant and/or drought-adapted grape varieties that meet the demands of consumers and society.

Field performance of red and white “pilzwiderstandsfähige” (PIWI) cultivars in the south of Uruguay

As knowledge about the oenological potential of disease-tolerant grape varieties (PIWI) continues to grow and consumer demand for product safety and sustainable production increases, more governments worldwide are permitting the cultivation of these varieties [1].

Evolution and sensory contribution of ethyl acetate in sweet wines

Ethyl acetate (EtOAc) is the main ester present in all wines, generally produced by yeasts during alcoholic fermentation and sometimes by bacteria during barrel ageing. Its odor is characterized by solvent notes, which give wines their acescent note [1].

Evaluating the greenness of wine analytical chemistry: A new metric approach

Wine is a complex matrix whose composition depends on climatic, agricultural, and winemaking factors, making quality control and authenticity assessment critical in the global market.