terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Separation and elucidation of ethylidene-bridged catechin oligomers using preparative-HPLC and NMR

Separation and elucidation of ethylidene-bridged catechin oligomers using preparative-HPLC and NMR

Abstract

During wine aging, small amounts of oxygen are absorbed and initiate a cascade of oxidation reactions. These aging reactions create many products including ethylidene-bridged oligomers and polymers of endogenous polyphenols, like flavan-3ols. This bridging is believed to reduce bitterness and astringency while enhancing color stability in aged wine [1]. The elongation reactions are products of interaction of flavonoids with acetaldehyde, an oxidation product of ethanol. While studies have been conducted confirming the reaction between acetaldehyde and various flavan-3-ols, there has not been research elucidating the structure of individual ethylidene-bridged flavan-3-ols. Previous acetaldehyde-flavan-3-ol nuclear magnetic resonance (NMR) experiments have either been conducted using the entire reaction mixture [2], or of the total amount of precipitates, which would include all of the polymers from the reaction. The goal of this experiment was to isolate various ethylidene-bridged catechin oligomers (dimer, trimer and tetramer) and confirm their proposed structure and yield using NMR. To investigate this, exogenous acetaldehyde and catechin (both 500 mg/L) were added to model wine (12.5% EtOH, pH 3.5), and incubated at 35°C for 7 days to allow for sufficient reaction. Using reverse-phase preparative-high-performance liquid-chromatography (RP-prep-HPLC) affixed with a diode array detector (DAD), the individual ethylidene-bridged catechin oligomers were isolated. Ethylidene-bridged oligomer purity and stability were determined using previously created liquid-chromatography mass-spectrometry (LC-MS) methods. After 10 hours of incubation at 20°C, the signal of the ethylidene bridged dimer was 23.3% of the initial isolate signal, demonstrating degradation after removal from the model solution. Isolates were dried using a freeze-dryer to preserve purity and stability. Interestingly, the ethylidene-bridged oligomers are stable prior to isolation from the reaction mixture. These products could potentially be in equilibrium with the reactants. All isolates (ethylidene-bridged dimer, trimer, tetramer) were redissolved in methanol-d4 and measured using both 1H and 13C NMR for elucidation of structure. NMR characterization of these compounds has increased our understanding of LC-MS data conducted on actual wine investigating the fate and kinetics of acetaldehyde mediated bridging of flavonoids.

References

[1] Sheridan, M., Elias, R. (2016). J Agric Food Chem, 64, 45, 8615-8624.

[2] Peterson, A., Waterhouse, A. (2016). J Agric Food Chem, 64, 36, 6869–6878.

Publication date: June 4, 2025

Type: Flash talk

Authors

Ezekiel R. Warren1, Ryan J. Elias1, Misha T. Kwasniewski1,*

1 Department of Food Science, The Pennsylvania State University, University Park, 16802, United States

Contact the author*

Keywords

acetaldehyde, aging, oxidation, polyphenols

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Aroma typicity of Timorasso wines: influence of ageing on volatile organic compounds and sensory descriptors

‘Timorasso’ is an autochthonous white grape variety from southern Piedmont (Italy) used for producing wines in the Colli Tortonesi product designation of origin (PDO). Over the last decade, there has been a notable rise in its production, due to the increased interest of wine enthusiasts who prized its wine distinctive ageing notes [1].

Comparison of the aroma profile in total and partial dealcoholisation of white and red wines by reverse osmosis

The increasing demand for low-alcohol and non-alcoholic wines has led to the development of advanced dealcoholisation techniques aimed at preserving wine quality while reducing ethanol content. Reverse osmosis is one of the most widely used membrane-based processes for the selective removal of ethanol [1].

Flavonol and anthocyanin potential of Spanish minority grapes and its relationship with wine colour

Global climate change is currently affecting vine phenology and causing a decoupling between technological and phenolic maturity of the grapes [1]. Wine industry has to face the challenge of making quality wines from grapes with an unbalanced phenolic composition.

Single plant oenotyping: a novel approach to better understand the impact of drought on red wine quality in Vitis x Muscadinia genotypes

Adopting disease-tolerant varieties is an efficient solution to limit environmental impacts linked to pesticide use in viticulture. In most breeding programs, these varieties are selected depending on their abilities to tolerate diseases, but little is known about their behaviour in response to abiotic constraints.

Investigating biotic and abiotic stress responses in grafted grapevine cultivars: A comparative study of Cabernet-Sauvignon and Cabernet Volos on M4 rootstock

When grapevine plants are transplanted into already established vineyards, they face multiple challenges, including adverse climate, heavy metal accumulation from agronomic practices [1], and pressure from highly adapted pathogens [2].