terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Comprehensive lipid profiling of grape musts: impact of static settling

Comprehensive lipid profiling of grape musts: impact of static settling

Abstract

Lipids are crucial in alcoholic fermentation, influencing yeast metabolism by providing nutrients and modulating membrane composition [1]. They also serve as precursors to aromatic compounds shaping wine sensory profiles [2]. While sterols and unsaturated fatty acids have been extensively studied, the overall lipid composition in grape musts remains poorly understood. Many lipid families, including phospholipids, sphingolipids, and glycolipids, have been largely overlooked. This study aims to provide a comprehensive lipid profile by identifying as many species as possible, beyond the commonly studied sterols and fatty acids.

Clarification, a widespread winemaking process, significantly reduces lipid availability, potentially leading to slow or stuck fermentations and undesirable aromas [4-6]. This study examines white grape musts from eight varieties and the impact of static settling on lipid composition. Initially, untargeted LC-MS QToF was used to capture a broad lipid spectrum, guiding targeted quantification methods. Free fatty acids, total fatty acids, and sterols were quantified via GC-MS, while phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, steryl esters, glycerolipids, and ceramides were analyzed by LC-MS.

For the first time in grape must analysis, an untargeted LC-MS QToF approach enabled the detection of 562 lipid compounds, 112 of which were confirmed as sphingolipids, fatty acids, phospholipids, glycerolipids, and sterols. Some lipid subclasses, such as (lyso)phosphatidylethanolamines, (lyso)phosphatidylinositols, and steryl esters, had never been reported in grape musts. Targeted quantification by GC-MS and LC-MS identified 375 lipids across nine subclasses, with 297 displaying significant differences (ANOVA α=0.05). Clarification significantly affected lipid concentrations, impacting 73% of detected species (Kruskal-Wallis α=0.05), particularly sterols, fatty acids, and phospholipids—key molecules for yeast metabolism.

These findings underscore the importance of studying the full complexity of lipid composition in grape musts and suggest that revising clarification practices could help preserve essential lipids, thereby improving fermentation efficiency and wine quality. Overall, this study provides new insights into the lipid composition of grape musts and the nutritional challenges yeast may face during fermentation.

References

[1] Tesnière, C. (2019). Appl Microbiol Biotechnol, 103 (20), 8293–8300.

[2] Yunoki, K.; Hirose, S.; Ohnishi, M. (2007) Bioscience, Biotechnology, and Biochemistry, 71 (12), 3105–3109.

[3] Alexandre, H.; Nguyen Van Long, T.; Feuillat, M.; Charpentier, C. (1994) Rev. fr. oenol, 34 (146), 11–20.

[4] Delfini, C.; Cocito, C.; Ravaglia, S.; Conterno, L. (1993) Am J Enol Vitic., 44 (4), 452–458.

[5] Varela, F.; Calderón, F.; González, M. C.; Colomo, B.; Suárez, J. A. (1999) European Food Research and Technology, 209 (6), 439–444

[6] Vázquez-Pateiro, I.; Mirás-Avalos, J. M.; Falqué, E. (2022) Molecules, 27 (3), 810.

Publication date: June 4, 2025

Type: Poster

Authors

Louise Ramousse1,*, Zandile Mlamla2, Jean-Paul Pais de Barros2,3,4, Hervé Alexandre1, Chloé Roullier-Gall1

1 Université Bourgogne Europe, Institut Agro, INRAE, UMR PAM, F-21000 Dijon, France
2 Plateforme DiviOmics, US 58 BioSanD, Université Bourgogne Europe, Dijon, France
3 UMR1231, Inserm/Université Bourgogne Europe, Dijon, France
4 LipSTIC Labex, Dijon, France

Contact the author*

Keywords

lipids profiling, musts, yeast nutrition, settling

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Understanding novel germplasm solutions: sensory, chemical and preliminary hedonic insights of wines made from Australian first-generation mildew resistant cultivars

One of the major issues for wine production in Australia is the management and eradication of powdery and downy mildews and the associated yield losses they present, costing Australian grape growers upwards of AUD$160M per annum [1].

Optimized grape seed protein extraction for wine fining

The extraction of proteins from grape seeds represents a promising strategy to revalorize wine industry by-products. As a natural endogenous fining agent, grape seed protein (GSE) offers an effective solution for wine clarification [1] without requiring label declaration.

Quality assessment of partially dealcoholized and dealcoholized red, rosé, and white wines: physicochemical, color, volatile, and sensory insights

The global non-alcoholic wine market is projected to grow from USD 2.7 billion in 2024 to USD 6.97 billion by 2034, driven by health awareness, lifestyle shifts, and religious factors [1-3]. Consequently, the removal of alcohol can significantly alter the key quality parameters of wine.

New use of natural silk fiber as a fining agent in wines

Undesirable compounds in wine, like OTA, biogenic amines, and pesticide residues, can negatively affect its quality and pose health risks to consumers. In addition, an excess of tannins can lead to an unpleasant rise in astringency and bitterness, which makes tannins another target of reduction.

Unveiling the chemical headspace of sparkling wine glasses by laser spectroscopy

Right after serving a sparkling wine into a glass, thousands of rising and bursting bubbles convey gas-phase CO2 and volatile organic compounds (VOCs) in the headspace above the champagne surface, thus progressively modifying the gaseous chemical space perceived by the consumer [1].