terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Comprehensive lipid profiling of grape musts: impact of static settling

Comprehensive lipid profiling of grape musts: impact of static settling

Abstract

Lipids are crucial in alcoholic fermentation, influencing yeast metabolism by providing nutrients and modulating membrane composition [1]. They also serve as precursors to aromatic compounds shaping wine sensory profiles [2]. While sterols and unsaturated fatty acids have been extensively studied, the overall lipid composition in grape musts remains poorly understood. Many lipid families, including phospholipids, sphingolipids, and glycolipids, have been largely overlooked. This study aims to provide a comprehensive lipid profile by identifying as many species as possible, beyond the commonly studied sterols and fatty acids.

Clarification, a widespread winemaking process, significantly reduces lipid availability, potentially leading to slow or stuck fermentations and undesirable aromas [4-6]. This study examines white grape musts from eight varieties and the impact of static settling on lipid composition. Initially, untargeted LC-MS QToF was used to capture a broad lipid spectrum, guiding targeted quantification methods. Free fatty acids, total fatty acids, and sterols were quantified via GC-MS, while phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, steryl esters, glycerolipids, and ceramides were analyzed by LC-MS.

For the first time in grape must analysis, an untargeted LC-MS QToF approach enabled the detection of 562 lipid compounds, 112 of which were confirmed as sphingolipids, fatty acids, phospholipids, glycerolipids, and sterols. Some lipid subclasses, such as (lyso)phosphatidylethanolamines, (lyso)phosphatidylinositols, and steryl esters, had never been reported in grape musts. Targeted quantification by GC-MS and LC-MS identified 375 lipids across nine subclasses, with 297 displaying significant differences (ANOVA α=0.05). Clarification significantly affected lipid concentrations, impacting 73% of detected species (Kruskal-Wallis α=0.05), particularly sterols, fatty acids, and phospholipids—key molecules for yeast metabolism.

These findings underscore the importance of studying the full complexity of lipid composition in grape musts and suggest that revising clarification practices could help preserve essential lipids, thereby improving fermentation efficiency and wine quality. Overall, this study provides new insights into the lipid composition of grape musts and the nutritional challenges yeast may face during fermentation.

References

[1] Tesnière, C. (2019). Appl Microbiol Biotechnol, 103 (20), 8293–8300.

[2] Yunoki, K.; Hirose, S.; Ohnishi, M. (2007) Bioscience, Biotechnology, and Biochemistry, 71 (12), 3105–3109.

[3] Alexandre, H.; Nguyen Van Long, T.; Feuillat, M.; Charpentier, C. (1994) Rev. fr. oenol, 34 (146), 11–20.

[4] Delfini, C.; Cocito, C.; Ravaglia, S.; Conterno, L. (1993) Am J Enol Vitic., 44 (4), 452–458.

[5] Varela, F.; Calderón, F.; González, M. C.; Colomo, B.; Suárez, J. A. (1999) European Food Research and Technology, 209 (6), 439–444

[6] Vázquez-Pateiro, I.; Mirás-Avalos, J. M.; Falqué, E. (2022) Molecules, 27 (3), 810.

Publication date: June 4, 2025

Type: Poster

Authors

Louise Ramousse1,*, Zandile Mlamla2, Jean-Paul Pais de Barros2,3,4, Hervé Alexandre1, Chloé Roullier-Gall1

1 Université Bourgogne Europe, Institut Agro, INRAE, UMR PAM, F-21000 Dijon, France
2 Plateforme DiviOmics, US 58 BioSanD, Université Bourgogne Europe, Dijon, France
3 UMR1231, Inserm/Université Bourgogne Europe, Dijon, France
4 LipSTIC Labex, Dijon, France

Contact the author*

Keywords

lipids profiling, musts, yeast nutrition, settling

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Exploring the impact of different closures on tannin evolutions by combining metabolomic approach and feature-based molecular networking

Condensed tannins (CTs), polymers of flavan-3-ols, are a class of polyphenolic compounds that play a significant role in the organoleptic qualities of red wines, particularly influencing color, astringency and bitterness. These properties are highly dependent on size and structure of these compounds.

Catechins, NMR, Huntington’s disease, protein aggregation modulation

Catechins, a subclass of flavonoids widely found in plants and plant-based foods and beverages such as wine and tea, not only exhibit significant antioxidant properties [1], as extensively documented in the literature, but can also inhibit amyloid protein aggregation [2], a key process implicated in the onset of neurodegenerative diseases such as Parkinson’s, Alzheimer’s, and Huntington’s.

Exploiting the diversity in spent yeast for its valorisation towards producing yeast-derived processing aids

In view of sustainability and zero-waste initiatives, the valorisation of sidestreams is a key emerging topic in the wine industry.

Exploring the presence of oligopeptides in wines into identify possible compounds with umami or kokumi properties

Umami is defined as a pleasant and savory taste derived from glutamate, inosinate and guanylate, which are naturally present in meat, fish, vegetables and dairy products. The term “kokumi” refers to a complex flavour sensation, characterized by thickness, fullness and continuity.

α-Terpinyl ethyl ether: stereoselective GC × GC confirmation and identification of its precursors in wine

Wines exhibit profound chemical complexity which arise from a diverse array of compounds that contribute to its sensory profile.