terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Comprehensive lipid profiling of grape musts: impact of static settling

Comprehensive lipid profiling of grape musts: impact of static settling

Abstract

Lipids are crucial in alcoholic fermentation, influencing yeast metabolism by providing nutrients and modulating membrane composition [1]. They also serve as precursors to aromatic compounds shaping wine sensory profiles [2]. While sterols and unsaturated fatty acids have been extensively studied, the overall lipid composition in grape musts remains poorly understood. Many lipid families, including phospholipids, sphingolipids, and glycolipids, have been largely overlooked. This study aims to provide a comprehensive lipid profile by identifying as many species as possible, beyond the commonly studied sterols and fatty acids.

Clarification, a widespread winemaking process, significantly reduces lipid availability, potentially leading to slow or stuck fermentations and undesirable aromas [4-6]. This study examines white grape musts from eight varieties and the impact of static settling on lipid composition. Initially, untargeted LC-MS QToF was used to capture a broad lipid spectrum, guiding targeted quantification methods. Free fatty acids, total fatty acids, and sterols were quantified via GC-MS, while phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, steryl esters, glycerolipids, and ceramides were analyzed by LC-MS.

For the first time in grape must analysis, an untargeted LC-MS QToF approach enabled the detection of 562 lipid compounds, 112 of which were confirmed as sphingolipids, fatty acids, phospholipids, glycerolipids, and sterols. Some lipid subclasses, such as (lyso)phosphatidylethanolamines, (lyso)phosphatidylinositols, and steryl esters, had never been reported in grape musts. Targeted quantification by GC-MS and LC-MS identified 375 lipids across nine subclasses, with 297 displaying significant differences (ANOVA α=0.05). Clarification significantly affected lipid concentrations, impacting 73% of detected species (Kruskal-Wallis α=0.05), particularly sterols, fatty acids, and phospholipids—key molecules for yeast metabolism.

These findings underscore the importance of studying the full complexity of lipid composition in grape musts and suggest that revising clarification practices could help preserve essential lipids, thereby improving fermentation efficiency and wine quality. Overall, this study provides new insights into the lipid composition of grape musts and the nutritional challenges yeast may face during fermentation.

References

[1] Tesnière, C. (2019). Appl Microbiol Biotechnol, 103 (20), 8293–8300.

[2] Yunoki, K.; Hirose, S.; Ohnishi, M. (2007) Bioscience, Biotechnology, and Biochemistry, 71 (12), 3105–3109.

[3] Alexandre, H.; Nguyen Van Long, T.; Feuillat, M.; Charpentier, C. (1994) Rev. fr. oenol, 34 (146), 11–20.

[4] Delfini, C.; Cocito, C.; Ravaglia, S.; Conterno, L. (1993) Am J Enol Vitic., 44 (4), 452–458.

[5] Varela, F.; Calderón, F.; González, M. C.; Colomo, B.; Suárez, J. A. (1999) European Food Research and Technology, 209 (6), 439–444

[6] Vázquez-Pateiro, I.; Mirás-Avalos, J. M.; Falqué, E. (2022) Molecules, 27 (3), 810.

Publication date: June 4, 2025

Type: Poster

Authors

Louise Ramousse1,*, Zandile Mlamla2, Jean-Paul Pais de Barros2,3,4, Hervé Alexandre1, Chloé Roullier-Gall1

1 Université Bourgogne Europe, Institut Agro, INRAE, UMR PAM, F-21000 Dijon, France
2 Plateforme DiviOmics, US 58 BioSanD, Université Bourgogne Europe, Dijon, France
3 UMR1231, Inserm/Université Bourgogne Europe, Dijon, France
4 LipSTIC Labex, Dijon, France

Contact the author*

Keywords

lipids profiling, musts, yeast nutrition, settling

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Evolution of oak barrels C-glucosidic ellagitannins in model wine solution

Oak wood has a significant impact on the chemical composition of wine, leading to transformations that influence its organoleptic properties, such as its aroma, structure, astringency, bitterness and color. Among the main extractible non-volatile polyphenol compounds released from oak wood, the ellagitannins are found [1].

Revisiting esters hydrolysis in young white wines

Esters play an essential role in the young white wines’ fruity expression, particularly the groups of ethyl esters of fatty acids (EEFAs) and higher alcohol acetates (HAAs) [1]. However, generally, these groups of esters decrease relatively fast during the first two years of ageing [1, 2].

Aroma compounds and physical-chemical characterization of grapes and wines from Mount Etna “relic-jewels” vine genotypes

In the last few decades, minor vine genotypes traditionally cultivated on the Mount Etna slopes, have attracted the interest of both researchers and vine growers, as they offer an interesting oenological profile.

Rationalising the impact of time, light, temperature, and oxygen on the evolution of rosé wines by means of a surface response methodology approach

The widespread use of flint glass bottles for rosé wines is driven by consumer preference for color as a key choice factor.

Effect of ozone treatments in wine production on colour traits, volatile composition, and sensory characteristics of young and short-term aged white wines

The main aim of WiSSaTech project (PRIN P2022LXY3A),supported by the Italian Ministero dell’Università e della Ricerca and European Union-NextGenerationEU, is to investigate eco-friendly and safe alternatives to sulphur dioxide (SO2) in wine production.