terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Winemaking processes and oenological practices 9 Effect of must temperature and aspergillopepsin-I supplementation on PR-protein derived peptides

Effect of must temperature and aspergillopepsin-I supplementation on PR-protein derived peptides

Abstract

Protein instability in wines is challenging, and despite many efforts to find satisfactory alternatives to bentonite, both in terms of stability and quality, the solutions are limited in the wine industry. Among those proposed, aspergillopepsin-I supplementation (AP-I) completely stabilises wine when combined with the flash heating of musts, without compromising wine quality [1, 2]. However, the pasteurisation of must remains an arduous and economically disadvantaged process. Nevertheless, AP-I supplementation during fermentation has been reported to improve stability indices [3] through a mechanism that is still not fully explained.

This study investigates the effect of AP-I supplementation on the number and concentration of peptides resulting from the degradation of grape-derived proteins and the influence of temperature and reaction time. A Gewürztraminer grape must was heated at 20°C, 30°C, and 40°C in the presence or absence of AP-I (100 µg/L). The temperature was maintained for 1, 180, and 360 min, after which the musts samples were frozen, until analysis. The peptide composition of the samples was analysed using high-throughput ultra-high pressure liquid chromatography coupled to data-independent acquisition-based ion mobility separation-enabled high resolution mass spectrometry (UPLC-DIA-IMS-HRMS) and peptide mapping was conducted according to [4], [5].

AP-I supplementation significantly increased both the number of individual peptides (up to +51% at 40°C) and the abundance (up to +120% at 20°C) of grape-derived peptides. A statistically significant increase was observed regardless of temperature and was consistent across all analysed protein derivatives (Chitinases, PR-protein, Polyphenol oxidases, and Thaumatin-like proteins). Regarding reaction time, all treatment intervals increased both the number and concentration of grape-derived peptides with respect to the untreated control. However, extended treatment duration did not result in a further increase, potentially indicating an elevated rate of reaction with proteins suspected to be degraded.

The addition of AP-I to grape must, enlarged the peptides pool within the grape juice, also at temperature below 40°C. This new approach in the use of the enzyme is suggesting a proteolytic effect not only when AP-I is coupled with high temperature.

References

[1] Marangon, M., Van Sluyter, S. C., Robinson, E. M., Muhlack, R. A., Holt, H. E., Haynes, P. A., … & Waters, E. J. (2012). Food Chem, 135(3), 1157-1165.

[2] Gallo, A., Roman, T., Paolini, M., Tonidandel, L., Leonardelli, A., Celotti, E., Natolino, A., Cappello, N. & Larcher, R. (2024). Food Res Int, 186, 114332.

[3] Benucci, I., Lombardelli, C., Muganu, M., Mazzocchi, C., & Esti, M. (2022). Foods, 11(15), 2246.

[4] Berg, H. Y., Arju, G., & Nisamedtinov, I. (2025). J Am Soc Brew Chem, 83(1), 88-100.

[5] Arju, G., Berg, H. Y., Lints, T., & Nisamedtinov, I. (2022). Fermentation, 8(4), 145.

Publication date: June 4, 2025

Type: Poster

Authors

Adelaide Gallo1,2,*, Rémi Schneider1, Emilio Celotti3, Andrea Natolino3, Nicola Cappello2, Tomas Roman2

1 Oenobrands SAS Parc Agropolis II-Bât 5 2196 Bd de la Lironde-34980 Montferrier-sur-Lez, France
2 Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38098 San Michele all’Adige, Italy
3 Università degli Studi di Udine—Dipartimento di Scienze Agroalimentari, Ambientali e Animali. Via delle Scienze 206 – Udine, Italy

Contact the author*

Keywords

proteases, chitinases, TLPs, protein stability

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Development of novel drought-tolerant grape cultivars from Monastrell: enhancing anthocyanin and flavonol content under elevated temperatures

The ongoing challenge of climate change is driving the need for novel oenological approaches aimed at finding effective environmental solutions.

Highlighting a link between the structure of mannoproteins and their foaming properties in sparkling wines

Effervescence and foaming properties are the main visual characteristics assessed by the consumer during
sparkling wine tasting.

Predicting oxygen consumption rate by tannins through sweep linear voltammetry and machine learning models

Nowadays, it is well known that oxygen significantly impacts wine quality. The amount of oxygen wine consumes during the winemaking process depends on several factors, such as storage conditions, the number of rackings, the materials used for aging, and the type of closure chosen for bottling.

Transforming winemaking waste: grape pomace as a sustainable source of bioactive compounds

Grapevines (Vitis vinifera L.) are plants of great economic importance, with over 80% of grape production dedicated to wine production, yielding more than 258 million hectoliters annually [1].

Quantitative assessment of must composition using benchtop NMR spectroscopy: comparative evaluation with FTIR and validation by reference

The foundation of wine production lies in the use of high-quality grapes. To produce wines that meet the highest standards, a fast and reliable analytical assessment of grape quality is essential. Many wineries currently employ Fourier-Transform Middle-Infrared Spectroscopy (FTIR) for this purpose.