terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Chemical and biochemical reactions, including grape and wine microorganism’s impact 9 Unveiling the fungal diversity of Falanghina grapes and the role of autochthonous Saccharomyces and non-Saccharomyces yeasts in wine fermentation

Unveiling the fungal diversity of Falanghina grapes and the role of autochthonous Saccharomyces and non-Saccharomyces yeasts in wine fermentation

Abstract

Falanghina, a typical wine from the Sannio (Campania region, Italy), hosts a complex fungal microbiota that significantly influences both fermentation dynamics and sensory characteristics. This study aimed to compare different metabarcoding markers for profiling fungal communities and to characterize the diversity and role of non-Saccharomyces yeasts in natural fermentations. To assess fungal diversity, three DNA barcode markers (ITS1, ITS2, and D1/D2 of 26S rDNA) [1, 2, 3] were evaluated across six Falanghina grape samples and their corresponding musts at different fermentation stages. ITS2 provided the most comprehensive taxonomic resolution, identifying 63 fungal genera, whereas ITS1 and 26S revealed 20 and 17 genera, respectively. The predominant mycobiota included Metschnikowia, Hanseniaspora, Saccharomyces, Pichia, Aureobasidium, and Starmerella. However, culture-based methods enabled the identification of additional genera, such as Candida, Wickerhamomyces, Rhodotorula, and Sarocladium, reinforcing the importance of integrating molecular and traditional approaches. A complementary study focused on the isolation and characterization of non-Saccharomyces yeasts from these fermentations. Fifty-seven biotypes were distinguished based on morpho-physiological traits and enzymatic activities, including β-glucosidase production and ethanol tolerance. ITS sequencing (ITS1-5.8S-ITS2 rDNA) [4] of strains confirmed the presence, in addition to Saccharomyces (S.) cerevisiae, of 13 non-Saccharomyces species, with Metschnikowia (M.) pulcherrima and Hanseniaspora guilliermondii being the most frequently occurring. Notably, microbial composition varied according to the grape’s terroir. Autochthonous selected strains of M. pulcherrima (MP12 and MP24) and S. cerevisiae (BIO3) in 120L vinification trials were tested. Sensory analysis revealed distinct aroma profiles: wines fermented with BIO3 alone exhibited pronounced banana notes, while MP12+BIO3 enhanced pear and exotic fruit aromas, and MP24+BIO3 contributed citrus, grapefruit, floral, and vegetal nuances. These findings highlight the value of ITS2 as a metabarcoding marker for fungal diversity analysis in wine and underscore the potential of non-Saccharomyces yeasts in modulating sensory attributes. Co-inoculation strategies with S. cerevisiae offer promising applications to improve fermentation performance and enhance the aromatic complexity of Falanghina wines.

References

[1] Rué, O., Coton, M., Dugat-Bony, E., Howell, K., Irlinger, F., Legras, J. L., Sicard, D. (2023). Peer Comm. J.3.

[2] Bokulich, NA.; Mills, DA. (2013). Appl. Environ. Microbiol., (79:2519-2526).

[3] Figueroa-Hernández, C., Mota-Gutierrez, J., Ferrocino, I., Hernández-Estrada, Z. J., González-Ríos, O., Cocolin, L., & Suárez-Quiroz, M. L. (2019).  Int. J. Food Microbiol., 301, 41-50.

[4] Esteve-Zarzoso, B., Belloch, C., Uruburu, F., & Querol, A. (1999). Int. J. Syst. Bacteriol., 49(1), 329-337.

Publication date: June 4, 2025

Type: Flash talk

Authors

Ernesto Petruzziello1,*, Mariacarmela Colandrea1, Vincenzo Valentino2, Elisabetta Pittari1, Francesca De Filippis2, Paola Piombino1, Giuseppe Baliotta1

1 Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Naples Federico II, 83100 Avellino, Italy
2 Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy

Contact the author*

Keywords

metabarcoding, microbial terroir, wine fermentation, sensory analysis, co-inoculation

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Colour, phenolic, and sensory characteristics of commercial monovarietal white wines produced with maceration

White wines produced with skin and seed contact are of great interest in the wine sector. Maceration, whether performed prior to or concurrently with alcoholic fermentation, or even extended beyond its completion, significantly impacts the chromatic, mouthfeel, and aroma characteristics of these wines.

The role of malolactic bacteria metabolism on the organoleptic qualities of wines

Lactic acid bacteria (LAB) are essential microorganisms in winemaking due to their role in malolactic fermentation (MLF) [1]. This process not only ensures the biological stabilization of wine through the decarboxylation of malic acid into lactic acid but also contributes to modifications in the chemical composition of the wine [2][3].

Sensory changes in wines associated with the ripening of Grenache grapes from vineyards in different climatic zones

Climate change is introducing a high variability on grape ripening, causing uncertainty, excessive spending on pesticides and eventually frustrating results in terms of the quality of the vintage, with the increasingly frequent appearance of aromatic problems associated with overripeness, raisining and greenness, which sometimes only appear in bottled wines.

Discrimination of South Tyrol’s wines by their cultivation practices: A detailed mass spectrometric approach

Climate change is having a profound effect on viticulture by altering the conditions under which vines grow, leading to increased water stress and earlier harvests, which in turn affect the quality and character of wines [1].

Release and perception of γ-nonalactone and massoia lactone in the red wine matrix: impact of ethanol and acidity

Climate change (CC) is altering grape/wine composition, challenging wine sensory quality. Rising temperatures increase grape sugar levels, with higher wine ethanol (EtOH) contents, reduce total acidity (TA) converging with increased pH and lead to the accumulation of CC odorous markers such as γ-nonalactone (γ-C9) and massoia lactone (ML).