terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Integrated approach to grape stalks valorization: sustainable recovery of bioactive compounds and biofuel production

Integrated approach to grape stalks valorization: sustainable recovery of bioactive compounds and biofuel production

Abstract

Grape stalks are a byproduct of the winemaking process and represent a valuable and inexpensive source of bioactive compounds. While their direct use in whole bunch fermentation is known [1, 2], the majority of grape stalks are discarded, posing environmental and economic challenges. Notably, this byproduct contains a diverse array of extractable polyphenolic compounds, including phenolic acids, flavanols, flavonols, and condensed tannins [3]. Among polyphenols, quercetin-3-glucuronide, catechin, caftaric acid, and astilbin have been identified [4]. However, the high lignocellulosic content in grape stalks limits the direct extraction of a large portion of the polyphenolic component just by conventional methods. Lignin, a major structural component, consists in fact of a complex network of polymerized phenolic units. Structural analysis of grapes lignin revealed a predominance of β-O-4′ structures, with moderate amounts of β-5′, β-β, β-1′, 5-5′, and 4-O-5′ structures. The condensation degree in grape stalks is higher than that of other lignin from other agricultural residues. Grape stalks lignin was shown to contain on average a 3:71:26 molar proportion of p-hydroxyphenyl, guaiacyl, and syringyl phenolic units [5]. Several strategies have been investigated to yield a partial or even total breakdown of the lignocellulosic fraction, with subsequent extraction of the depolymerization products, providing an inexhaustible source of phenolic compounds from a practically inexpensive source material.

In this contribution, we are presenting preliminary results from an integrated approach based on tuning hydrothermal carbonization (HTC) conditions to facilitate a partial breakdown of lignin, then to increase the efficiency of extraction of polyphenolic compounds. HTC was further tested to investigate the application of grape stalks residues for producing hydrochar, also testing the process for the valorization of unextracted residues as biofuels, contributing to a fully circular bioeconomy. Our approach highlights the potential for grape stalks applications, demonstrating a sustainable approach to repurposing this underutilized resource.

References

[1] Wimalasiri, P. M., Olejar, K. J., Harrison, R., Hider, R., & Tian, B. (2022). Whole bunch fermentation and the use of grape stems: Effect on phenolic and volatile aroma composition of Vitis vinifera cv. Pinot Noir wine. Aust. J. Grape Wine Res., 28(3), 395-406

[2] Wimalasiri, P. M., Harrison, R., Olejar, K. J., Hider, R., & Tian, B. (2023). Colour characterisation of two‐year‐old Pinot noir wines by UV-Vis spectrophotometry and tristimulus colourimetry (CIELab): Effect of whole bunch or grape stems addition. Int. J. Food Sci.& Technol., 58(3), 1176-1185

[3] Souquet, J. M., Labarbe, B., Le Guernevé, C., Cheynier, V., & Moutounet, M. (2000). Phenolic composition of grape stems. J. Agr. Food Chem., 48(4), 1076-1080.

[4] Esparza, I., Moler, J. A., Arteta, M., Jiménez-Moreno, N., & Ancín-Azpilicueta, C. (2021). Phenolic composition of grape stems from different Spanish varieties and vintages. Biomol., 11(8), 1221

[5] Prozil, S. O., Evtuguin, D. V., Silva, A. M., & Lopes, L. P. (2014). Structural characterization of lignin from grape stalks (Vitis vinifera L.). J. Agr. Food Chem., 62(24), 5420-5428

Publication date: June 4, 2025

Type: Poster

Authors

Edoardo Longo1,*, Sara D’Aronco1, Francesco Patuzzi2, Giacomo Zuccon1, Alberto Ceccon3, Vittoria Benedetti4, Marco Baratieri2, Emanuele Boselli1,5
1 Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
2 Faculty of Engineering, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
3 Laimburg Research Centre, Laimburg 6 – Pfatten (Vadena), 39040 Auer (Ora), BZ, Italy
4 Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy
5 International Competence Centre for Food Fermentations, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy

Contact the author*

Keywords

grape stalks, polyphenols, recovery, hydrothermal carbonization, biofuels

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Novel insights into Passito wines aroma typicality. Rationalizing the markers of varietal and geographical origin of Amarone DOCG

Valpolicella is a famous Italian wine-producing region (Paronetto & Dellaglio, 2011), whose main characteristic is the extensive use of the post-harvest withering technique, which takes place in naturally ventilated rooms called ‘fruttai’ (Bellincontro et al., 2016).

Rationalising the impact of time, light, temperature, and oxygen on the evolution of rosé wines by means of a surface response methodology approach

The widespread use of flint glass bottles for rosé wines is driven by consumer preference for color as a key choice factor.

Characterization of intact glycoside aroma precursors of recovered minority Spanish red grape varieties by High-Resolution Mass Spectrometry

In Spain, the wide diversity of red grapevine varieties represents an advantage when choosing the most suitable one for cultivation based on different climatic conditions, without implying a loss of their enological potential.

New use of natural silk fiber as a fining agent in wines

Undesirable compounds in wine, like OTA, biogenic amines, and pesticide residues, can negatively affect its quality and pose health risks to consumers. In addition, an excess of tannins can lead to an unpleasant rise in astringency and bitterness, which makes tannins another target of reduction.

From bush to glass: unlocking the potential of indigenous microbes in Australian wines

Global trends in the wine industry are changing, which is caused by consumer demands for aroma and flavour innovation. Producers in Australia, the sixth globally ranked wine producing country, are embracing this trend by exploring non-conventional yeast species to improve sensory qualities and achieve fermentation advantages.