terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Integrated approach to grape stalks valorization: sustainable recovery of bioactive compounds and biofuel production

Integrated approach to grape stalks valorization: sustainable recovery of bioactive compounds and biofuel production

Abstract

Grape stalks are a byproduct of the winemaking process and represent a valuable and inexpensive source of bioactive compounds. While their direct use in whole bunch fermentation is known [1, 2], the majority of grape stalks are discarded, posing environmental and economic challenges. Notably, this byproduct contains a diverse array of extractable polyphenolic compounds, including phenolic acids, flavanols, flavonols, and condensed tannins [3]. Among polyphenols, quercetin-3-glucuronide, catechin, caftaric acid, and astilbin have been identified [4]. However, the high lignocellulosic content in grape stalks limits the direct extraction of a large portion of the polyphenolic component just by conventional methods. Lignin, a major structural component, consists in fact of a complex network of polymerized phenolic units. Structural analysis of grapes lignin revealed a predominance of β-O-4′ structures, with moderate amounts of β-5′, β-β, β-1′, 5-5′, and 4-O-5′ structures. The condensation degree in grape stalks is higher than that of other lignin from other agricultural residues. Grape stalks lignin was shown to contain on average a 3:71:26 molar proportion of p-hydroxyphenyl, guaiacyl, and syringyl phenolic units [5]. Several strategies have been investigated to yield a partial or even total breakdown of the lignocellulosic fraction, with subsequent extraction of the depolymerization products, providing an inexhaustible source of phenolic compounds from a practically inexpensive source material.

In this contribution, we are presenting preliminary results from an integrated approach based on tuning hydrothermal carbonization (HTC) conditions to facilitate a partial breakdown of lignin, then to increase the efficiency of extraction of polyphenolic compounds. HTC was further tested to investigate the application of grape stalks residues for producing hydrochar, also testing the process for the valorization of unextracted residues as biofuels, contributing to a fully circular bioeconomy. Our approach highlights the potential for grape stalks applications, demonstrating a sustainable approach to repurposing this underutilized resource.

References

[1] Wimalasiri, P. M., Olejar, K. J., Harrison, R., Hider, R., & Tian, B. (2022). Whole bunch fermentation and the use of grape stems: Effect on phenolic and volatile aroma composition of Vitis vinifera cv. Pinot Noir wine. Aust. J. Grape Wine Res., 28(3), 395-406

[2] Wimalasiri, P. M., Harrison, R., Olejar, K. J., Hider, R., & Tian, B. (2023). Colour characterisation of two‐year‐old Pinot noir wines by UV-Vis spectrophotometry and tristimulus colourimetry (CIELab): Effect of whole bunch or grape stems addition. Int. J. Food Sci.& Technol., 58(3), 1176-1185

[3] Souquet, J. M., Labarbe, B., Le Guernevé, C., Cheynier, V., & Moutounet, M. (2000). Phenolic composition of grape stems. J. Agr. Food Chem., 48(4), 1076-1080.

[4] Esparza, I., Moler, J. A., Arteta, M., Jiménez-Moreno, N., & Ancín-Azpilicueta, C. (2021). Phenolic composition of grape stems from different Spanish varieties and vintages. Biomol., 11(8), 1221

[5] Prozil, S. O., Evtuguin, D. V., Silva, A. M., & Lopes, L. P. (2014). Structural characterization of lignin from grape stalks (Vitis vinifera L.). J. Agr. Food Chem., 62(24), 5420-5428

Publication date: June 4, 2025

Type: Poster

Authors

Edoardo Longo1,*, Sara D’Aronco1, Francesco Patuzzi2, Giacomo Zuccon1, Alberto Ceccon3, Marco Baratieri2, Emanuele Boselli1,4

1 Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
2 Faculty of Engineering, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
3 Laimburg Research Centre, Laimburg 6 – Pfatten (Vadena), 39040 Auer (Ora), BZ, Italy
4 International Competence Center for Food Fermentations, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy

Contact the author*

Keywords

grape stalks, polyphenols, recovery, hydrothermal carbonization, biofuels

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Effect of polysaccharide extracts from grape pomace on the oxidative evolution of hydroxycinnamic acids

Phenolic acids are especially sensitive to oxidation, so they can greatly impact wine sensory characteristics and stability [1]. Furthermore, extracts derived from grape pomace have been previously postulated as possible oenological adjuvants for wine protection [2].

Release and perception of γ-nonalactone and massoia lactone in the red wine matrix: impact of ethanol and acidity

Climate change (CC) is altering grape/wine composition, challenging wine sensory quality. Rising temperatures increase grape sugar levels, with higher wine ethanol (EtOH) contents, reduce total acidity (TA) converging with increased pH and lead to the accumulation of CC odorous markers such as γ-nonalactone (γ-C9) and massoia lactone (ML).

From varietal and terroir expression to off-odors: chemical background of wine aroma evolution during aging

Expression of sensory attributes that reflect the varietal and geographical origin of wines (aka terroir) is central to perceived wine quality and reputation of wine producing regions.

Revealing the aroma profile of Greek wines from indigenous grape cultivars

The indigenous Greek grape varieties Assyrtiko, Malagousia, Moschofilero and Roditis are used to produce white wines that are attracting the interest of wine producers and consumers due to their aromatic characteristics [1]. In addition, the Agiorgitiko and Xinomavro varieties are Greece’s most prominent red grape varieties.

Studying the redox state of wines under oxidative processes with a multi-parametric analysis

The detection of reducing compounds such as phenolic acids, anthocyanins or tannins is of prime importance to decipher on the antioxidant and anti-aging properties of wines.