terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Winemaking processes and oenological practices 9 Sorption of aroma compounds by commercial specific yeast derivatives and the influence of polyphenols

Sorption of aroma compounds by commercial specific yeast derivatives and the influence of polyphenols

Abstract

Specific inactivated yeast derivatives (SYDs) from S. cerevisiae are obtained through thermal, mechanical, and enzymatic processes and are used to enhance wine quality. Their impact on wine sensory properties varies depending on SYD type, fraction, matrix interactions and time, as they can modify aroma compounds’ volatility or concentration (1). Some studies have examined SYDs’ sorption of undesirable aroma compounds (2) but the sorption of key aroma compounds remains underexplored, particularly in relation to wine macromolecules such as polyphenols. Furthermore, no comparative study was found on the sorption capacity of different SYDs.

The aim of this research was to evaluate the sorption capacities of different SYDs in model wine conditions and to investigate the influence of polyphenols on such interactions with aroma compounds.

Three selected SYDs provided by Lallemand — inactivated yeast (IY), selected cell walls (CW), yeast protein extracts (YPE) — were fractionated based on solubility criteria. Insoluble fractions were added at 1 g/L to model wines containing 21 aroma compounds (esters, terpenoids, norisoprenoids, alcohols, aldehydes, phenols, sulphur compounds) in order to investigate their sorption according to functional groups and structural characteristics. Equilibrium sorption time was determined at 15°C, under constant agitation by monitoring free aroma concentrations in the supernatant over time. Aroma compounds were quantified by GC-MS (SIM mode) using external calibration for each compound, and after their liquid extraction with dichloromethane in presence of specific internal standards. Under equilibrium conditions, the impact of polyphenols was assessed using a 2 g/L polyphenol pool isolated from Syrah wine.

Sorption equilibrium was reached within 4 hours, and all insoluble fractions of SYDs exhibited aroma sorption capacity. The sorption capacity of the insoluble fraction of SYDs was influenced by their physicochemical properties and YPE showed the highest capacity, followed by IY and CW. Aroma compounds hydrophobicity played a key role since the most hydrophobic compounds within chemical groups (except for norisoprenoids), were preferentially sorbed, but structural properties have also shown an effect. Notably, polyphenols reduced sorption for some compounds, highlighting the importance of the wine matrix in SYD-aroma interactions. These findings provide insight into SYDs’ functionality and their potential application in aroma modulation during winemaking processes.

References

[1] Rigou P, Mekoue J, Sieczkowski N, Doco T, Vernhet A. Impact of industrial yeast derivative products on the modification of wine aroma compounds and sensorial profile. A review. Food Chemistry. 2021 Oct;358:129760.

[2] Nieto-Rojo R, Ancín-Azpilicueta C, Garrido JJ. Sorption of 4-ethylguaiacol and 4-ethylphenol on yeast cell walls, using a synthetic wine. Food Chemistry. 2014 Jun 1;152:399–406.

Publication date: June 4, 2025

Type: Poster

Authors

Laurie Favieres1,2,*, Céline Poncet-Legrand1, Aude Vernhet1, Nathalie Sieczkowski2, Julie Mekoue2, Peggy Rigou1

1 SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
2 Lallemand SAS, 19 rue des briquetiers, 31702 Blagnac Cedex, France

Contact the author*

Keywords

yeast derivatives, aroma compounds, sorption, polyphenols

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Exploring the physico-chemical modification of grape seed extracts to improve their clarifying effect in red wine

During winemaking, some byproducts are obtained, such as grape pomace, which represent 13% of winery byproducts.

Exploring the presence of oligopeptides in wines into identify possible compounds with umami or kokumi properties

Umami is defined as a pleasant and savory taste derived from glutamate, inosinate and guanylate, which are naturally present in meat, fish, vegetables and dairy products. The term “kokumi” refers to a complex flavour sensation, characterized by thickness, fullness and continuity.

Managing extraction of colour, tannin and methoxypyrazines in Pinot noir grapes treated by leaf removal

Managing extraction of tannins and green aroma compounds attributed from methoxypyrazines in winemaking is crucial for producing high quality Pinot noir wine. This study1 investigated the impact of leaf removal on concentrations of anthocyanins, tannins, and methoxypyrazines in Pinot noir grapes and resultant wines.

Influence of protective colloids on tartrate stability, polysaccharide contents and volatile compound profile of a white wine

The tartaric salts precipitation is one of the main issues regarding wine instability 1. In addition to the well-known and deeply studied phenomena of potassium hydrogentartrate precipitation (KHT), the last decade has been increased the phenomena of calcium tartrate (CaT) precipitation, that is a concern for the wine industry 2.

Investigating biotic and abiotic stress responses in grafted grapevine cultivars: A comparative study of Cabernet-Sauvignon and Cabernet Volos on M4 rootstock

When grapevine plants are transplanted into already established vineyards, they face multiple challenges, including adverse climate, heavy metal accumulation from agronomic practices [1], and pressure from highly adapted pathogens [2].