terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Validating a portable ad-hoc fluorescence spectrometer for monitoring phenolic compounds during wine fermentation

Validating a portable ad-hoc fluorescence spectrometer for monitoring phenolic compounds during wine fermentation

Abstract

Phenolic compounds are fundamental to wine quality, influencing its colour, mouthfeel, stability, and ageing potential [1]. Their extraction and evolution during fermentation plays a crucial role in determining the final sensory attributes and requires careful monitoring to guide winemaking decisions. Traditional analytical techniques such as high-performance liquid chromatography (HPLC) and UV-Vis spectrophotometry are well-established for phenolic quantification but are often impractical for real-time monitoring due to their time-intensive protocols and laboratory requirements. Fluorescence spectroscopy, with its high sensitivity and non-destructive nature, presents an attractive alternative [2]. However, commercially available instruments are not tailored to the unique challenges of winemaking, creating a gap in accessible and practical solutions for on-site monitoring.

This study validates a portable fluorescence spectrometer designed for the direct measurement of phenolic compounds in wine without the need for dilution or sample treatment. This capability allows for real-time monitoring of phenolic evolution throughout the entire fermentation process, providing rapid and reliable data directly from the wine matrix. The analytical performance of the spectrometer was evaluated in terms of its sensitivity, selectivity, repeatability, and robustness under winemaking conditions. A set of phenolic standards representing key wine polyphenols was used to assess figures of merit, including limit of detection (LOD), limit of quantification (LOQ), linearity, and reproducibility, all of which demonstrated strong analytical capabilities. Controlled fermentations with different grape musts were conducted, covering a range of phenolic profiles to test the instrument’s ability to differentiate and quantify relevant compounds. Fluorescence single excitation multiple emission matrices were generated and analysed through advanced chemometric methods, including Partial Least Squares Regression (PLSR) and other non-linear prediction algorithms [3]. These models enabled the accurate prediction of critical phenolic parameters such as total polyphenols, anthocyanins, and tannins, with particularly good performance observed in single cultivar specialized model fermentations, where spectral signals exhibited clearer correlations with reference phenolic measurements, achieving correlation coefficients higher than 80%.

The results highlight the potential of custom-designed ad-hoc analytical equipment as a game-changer for winemaking, offering a practical, efficient, and cost-effective alternative to traditional phenolic analysis. Unlike commercial fluorescence instruments adapted for general laboratory use, this tailor-made device is optimised for winery applications, enabling real-time decision-making without reliance on centralised facilities. Additionally, its versatile measuring chamber supports multiple configurations for diverse measurement needs and allows direct wine analysis without prior dilution, ensuring seamless integration into the production process as an effective process analytical technology. Its successful validation paves the way for a new paradigm in phenolic monitoring, empowering winemakers to enhance process control, refine blending and ageing strategies, and ultimately improve wine quality with greater precision and efficiency.

References

[1] Merkyte, V., Longo, E., Windisch, G., Boselli, E. (2020) Foods, 9(12), 1785.

[2] dos Santos, I., Bosman, G., Aleixandre-Tudó, J.L., du Toit, W. (2022) Talanta, 236, 122857.

[3] Cozzolino, D., Cynkar, W.U., Shah, N., Dambergs, R.G., Smith, P.A. (2009) International Journal of Wine Research, 1, 123-130.

Publication date: June 4, 2025

Type: Poster

Authors

Daniel Schorn-García1,*, Wessel du Toit1, Gurthwin Bosman2,3, Jose Luis Aleixandre-Tudo1,4

1 South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch
University, 7600, South Africa
2 Stellenbosch Photonics Institute, Physics Department, Stellenbosch University, Stellenbosch, South Africa.
3 National Institute for Theoretical and Computational Sciences (NITheCS), Stellenbosch, South Africa.
4 Instituto de Ingeniería de Alimentos (Food-UPV), Departamento de Tecnología de Alimentos (DTA), Universitat Politecnica de Valencia (UPV), Valencia, Spain

Contact the author*

Keywords

phenolic compounds, fluorescence spectroscopy, winemaking monitoring, chemometrics

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Exploiting the diversity in spent yeast for its valorisation towards producing yeast-derived processing aids

In view of sustainability and zero-waste initiatives, the valorisation of sidestreams is a key emerging topic in the wine industry.

Sorption of aroma compounds by commercial specific yeast derivatives and the influence of polyphenols

Specific inactivated yeast derivatives (SYDs) from S. cerevisiae are obtained through thermal, mechanical, and enzymatic processes and are used to enhance wine quality.

Characterization of a unique mannan from Starmerella bacillaris for protein stabilization in white wine

Yeast cell wall components are valuable biotechnological tools with applications in oenology and beyond [1], [2].

Colloidal color stabilization in wine: A comparative study of Saccharomyces and non-Saccharomyces mannoproteins

Structure-function relationships between the polysaccharide part of S. cerevisiae Mannoprotein Pools (MPs) and their potential to interact with anthocyanins and Protein-Tannins aggregates was previously assessed [1,2].

HPLC-based quantification of elemental sulfur in grape juice

Elemental sulfur is commonly used in vineyards as a fungicide to prevent diseases and protect grapevines.1 The challenges of climate change are intensifying disease pressure, further increasing the reliance on sulfur use. Understanding the range of potential impacts of residual sulfur during the winemaking process is becoming increasingly important.