terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Quantitative assessment of must composition using benchtop NMR spectroscopy: comparative evaluation with FTIR and validation by reference

Quantitative assessment of must composition using benchtop NMR spectroscopy: comparative evaluation with FTIR and validation by reference

Abstract

The foundation of wine production lies in the use of high-quality grapes. To produce wines that meet the highest standards, a fast and reliable analytical assessment of grape quality is essential. Many wineries currently employ Fourier-Transform Middle-Infrared Spectroscopy (FTIR) for this purpose. However, this technique demands frequent and intricate calibration with authentic reference samples, and its indirect quantification approach raises concerns about reliability for certain parameters. Additionally, FTIR has high detection limits for key indicators of grape rot, such as gluconic acid and volatile acids.

Nuclear magnetic resonance spectroscopy (NMR), on the other hand, enables the direct measurement of these compounds, eliminating the need for calibration and enabling precise quantification. However, conventional high-field NMR systems are associated with high acquisition and maintenance costs, limiting their widespread use. Continuous development has optimised benchtop NMR spectrometers providing a cost-effective alternative. Although these devices operate at lower magnetic field strengths and therefore have reduced resolution, they are a viable alternative. To overcome this limitation, we use a spectral correction and peak analysis algorithm based on quantum mechanical calculations and pattern recognition [1,2].

In this study, the must components were analysed quantitatively using benchtop NMR. The results obtained were compared with FTIR measurements and validated against established reference methods, including photochemical and titrations. The measurements showed good agreement with the reference values, demonstrating higher precision and possibly even better accuracy than conventional methods. This is to be verified in more detail by further gravimetric investigations. In addition, the sample preparation process was considerably simplified, as initial tests showed insensitivity to known interfering factors such as turbidity. This indicates a robust and efficient analysis method with reduced preparation effort.

Our results suggest that this method could be integrated into automated grape reception processes, allowing wineries and cooperatives to obtain important quality data in a timely manner. Further validation is required in order to conclusively assess its suitability for routine use.

References

[1] Matviychuk, Y., Haycock, S., Rutan, T., Holland, D. J. (2021). Anal. Chim. Acta, 1182, 338944.

[2] Phuong, J., Salgado, B., Heiß, J., Steimers, E., Nickolaus, P., Keller, L., Fischer, U., Harbou, E. von, Holland, D. J., Jirasek, F., Hasse, H., Münnemann, K. (2025). Food Res. Int., 203, 115741.

Publication date: June 4, 2025

Type: Poster

Authors

Julian F. D. Lueck1,2,*, Billy Salgado3,4, Patrick Nickolaus1,2, Fabian Jirasek3,4, Erik von Harbou5, Ulrich Fischer1,2,6, Jörg Fahrer6, Kerstin Münnemann3,4, and Lena Keller1,2,7

1 Weincampus Neustadt, Breitenweg 71, 67435 Neustadt (Weinstr.), Germany.
2 Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum Rheinpfalz (DLR Rheinpfalz), Breitenweg 71, 67435 Neustadt (Weinstr.), Germany.
3 Laboratory of Engineering Thermodynamics (LTD), University of Kaiserslautern-Landau (RPTU), Erwin-Schroedinger-Str. 44, 67663 Kaiserslautern, Germany.
4 Laboratory of Advance Spin Engineering – Magnetic Resonance (LASE-MR), University of Kaiserslautern-Landau (RPTU), Gottlieb-Daimler-Str. 76, 67663 Kaiserslautern, Germany.
5 Laboratory of Reaction and Fluid Process Engineering (LRF), University of Kaiserslautern-Landau (RPTU), Gottlieb-Daimler-Str. 44, 67663 Kaiserslautern, Germany.
6 Division of Food Chemistry and Toxicology, Department of Chemistry, University of Kaiserslautern-Landau (RPTU), Erwin-Schroedinger-Str. 52, 67663 Kaiserslautern, Germany.
7 Department of Applied Logistics and Polymer Sciences, Kaiserslautern University of Applied Sciences, Schoenstraße 11, 67659 Kaiserslautern, Germany.

Contact the author*

Keywords

benchtop-NMR-spectroscopy, chemical analysis, quality assessment, quantum mechanics

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Effect of pre-fermentative addition of oenological tannins on the volatile composition and colour characteristics of white wines

This study investigates the effect of pre-fermentative addition of oenological tannins on basic physicochemical parameters, total polyphenols index (TPI), antioxidant activity (DPPH method), colour traits, and volatile organic compounds (VOCs) of white wines made from ‘Vermentino’ or ‘Erbaluce’ grapes (Vitis vinifera).

The capacity of spectrofluorometric fingerprints to discern changes of wine composition: applications in classifying wine additives and tracking red wine maturation and ageing

Fluorescence spectroscopy combined with chemometrics has shown advantages in wine analysis due to being rapid, sensitive, and selective to fluorescent molecules. Especially due to the abundant phenolic compounds [1], the molecular fingerprints afforded by fluorescence spectroscopy can potentially be used to discern and track the change of wine composition, with two innovative investigations having been implemented.

Effects of winemaking variables on the chemical and sensory quality of Schiava wines up to one year storage in bottle

The interactive effects of three major enological variables were evaluated on the quality of Schiava wine up to one year of storage in bottle.

Effect of ozone treatments in wine production on colour traits, volatile composition, and sensory characteristics of young and short-term aged white wines

The main aim of WiSSaTech project (PRIN P2022LXY3A),supported by the Italian Ministero dell’Università e della Ricerca and European Union-NextGenerationEU, is to investigate eco-friendly and safe alternatives to sulphur dioxide (SO2) in wine production.

Characterization of resistant varieties produced in the context of a search for regional typicality

Planted between 2018 and 2019, the ‘New Vine’ system is a vineplot, comprising 169 individuals genotypes (5 vines/individual), located on a gravelous soil, in the INRAE Grande-Ferrade site (Villenave d’Ornon, France).