terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Chemical and biochemical reactions, including grape and wine microorganism’s impact 9 Isolation, biofilm formation and control of the wine spoilage yeast Brettanomyces bruxellensis

Isolation, biofilm formation and control of the wine spoilage yeast Brettanomyces bruxellensis

Abstract

Brettanomyces bruxellensis, commonly referred to as “Brett,” is one of the most notorious microorganisms implicated in wine spoilage. This yeast species has developed a noteworthy resistance to sulfur dioxide, a widely used preservative in winemaking, prompting the wine industry to seek new antimicrobial agents. The development of B. bruxellensis in wine can change the sensory properties of wine due to the production of undesirable aromas. The present work focuses on i) the biofilm-forming ability of B. bruxellensis, derived from Greek wines, on stainless steel surfaces ii) the ability of the adhered cell to cause wine spoilage iii) new treatment to handle the contamination. Three wines from different regions of Greece were collected and subjected in molecular analyses and identification at species level. RAPD (Random Amplified Polymorphic DNA) genomic fingerprinting with the oligo-nucleotide primer M13 was used, combined with Matrix Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry (MALDI-TOF MS) technique. Strain differentiation of B. bruxellensis different strains was achieved by rep-PCR fingerprinting method with the oligo-nucleotide primer GTG5. For the biofilm formation assay, stainless steel coupons were placed in test tubes containing sterilized Ringer solution and pure cultures of the different B. bruxellensis strains was inoculated at an initial population of approximately 107 CFU/mL. The tubes were incubated at 28 °C for 3 hours to allow attachment of the yeast cells onto the coupons surface. Biofilm growth was evaluated with the bead vortexing method. Finally, different treatments were applied in order to prevent the adherence of B. bruxellensis strains to the coupons. Overall, we showed that the attachment and biofilm formation capacity of the spoilage yeast is influenced by the strain effect and tree different types of adherences were noticed. Additionally, all tested treatments achieved to decrease the attached yeast cells proposing a new way of handling B. bruxellensis contamination.

References

[1] Dimopulou, M., Renault, M., Dols-Lafargue, M., Albertin-Leguay, W., Herry, J.-M., Bellon-Fontaine, M.-N., Masneuf-Pomarede, I. (2019). Microbiological, biochemical, physicochemical surface properties and biofilm forming ability of Brettanomyces bruxellensis (preprint). Microbiology.

[2] Agnolucci, M., & al, e. (2017). Brettanomyces bruxellensis yeasts: an impact on wine and winemaking. World Journal of Microbiology and Biotechnology, 33.

[3] Di Toro, M., & al, e. (2015). Intraspecific biodiversity and ‘spoilage potential’ of Brettanomyces bruxellensis in Apulian wines. Elsevier, 102-108.

[4] Cibrario, A., Miot-Sertier, C., Paulin, M., Bullier, B., Riquier, L., Perello, M.-C., de Revel, G., Albertin, W., Masneuf-Pomarède, I., Ballestra, P., Dols-Lafargue, M. (2020). Brettanomyces bruxellensis phenotypic diversity, tolerance to wine stress and wine spoilage ability. Food Microbiology, 87, 103379.

Publication date: June 4, 2025

Type: Poster

Authors

Aikaterini Tzamourani1, Nikolaos Mourdoukoutas1, Maria Dimopoulou1,*

1 Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, 28 Ag. Spyridonos St., 12243 Egaleo, Greece

Contact the author*

Keywords

wine spoilage, biofilm formation, Brettanomyces, spoilage treatement

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

137Cs analysis by gamma spectrometry and its potential for dating Portuguese old wines

Analytical methods for dating wines often rely on assessing anthropogenic and cosmogenic radionuclides, including 14C and 137Cs [1,2].

Studying the redox state of wines under oxidative processes with a multi-parametric analysis

The detection of reducing compounds such as phenolic acids, anthocyanins or tannins is of prime importance to decipher on the antioxidant and anti-aging properties of wines.

Evolution and sensory contribution of ethyl acetate in sweet wines

Ethyl acetate (EtOAc) is the main ester present in all wines, generally produced by yeasts during alcoholic fermentation and sometimes by bacteria during barrel ageing. Its odor is characterized by solvent notes, which give wines their acescent note [1].

Impact of yeast strain and aging time on the secondary metabolites, macromolecule composition, and sensory attributes of sparkling wines elaborated by the traditional method

The occurrence of aroma and macromolecule constituents in sparkling wines, directly influencing their organoleptic characteristics, is affected by several factors, including the grape cultivar, base-wine particularities, inoculated yeasts, the aging time, and winemaking practices [1].

Sensory patterns observed towards the oxidation of white, rosé and sparkling wines: An exploratory study

Oxygen management is crucial in terms of wine quality. Even more for white and rosé wines, which are less protected against oxidation than reds due to the lower levels of antioxidant polyphenols. This need is due to the existence of equilibria between chemical forms depending on the redox potential.