terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Wine, environment, health and sustainability 9 Profiling and evaluating wine lees by-products from various yeast strains against grapevine pathogens

Profiling and evaluating wine lees by-products from various yeast strains against grapevine pathogens

Abstract

Wine lees are the sediment that settles at the bottom of wine barrels, tanks, or bottles during the winemaking process and represent the second most significant by-product of wineries. Wine lees consist primarily of dead yeast cells which contain a complex mixture of both organic and inorganic molecules, such as proteins, peptides, polysaccharides, sterols, and long-chain fatty acids. This study aimed to evaluate the potential role of wine lees in combating grapevine pathogens. Six different wine yeast species were tested in fifteen fermentation schemes under monoculture and mixed-culture conditions. Fermentations were conducted in a laboratory medium that mimicked wine conditions (grape juice medium). The fermentation rate was monitored daily using an enzymatic method (Glucose/Fructose) following the OIV official protocol along with CO2 emission measurements. Following fermentation, yeast biomass was autolyzed and digested to produce High Molecular Weight Biomolecule Mixtures (HMW-BM) and Low Molecular Weight Biomolecule Mixtures (LMW-BM). These biomolecule mixtures were then evaluated in vitro for their ability to inhibit the growth of Botrytis cinerea, Aspergillus carbonarius, Phaeomoniella chlamydospora, and Phaeoacremonium minimum. Our results indicate that the most effective biomolecule mixture with a protective mode of action against grapevine pathogens was LMW-BM.

Aknowledgements

The research project entitled «reLees» is implemented in the framework of H.F.R.I call “Basic research Financing (Horizontal support of all Sciences)” under the National Recovery and Resilience Plan “Greece 2.0” funded by the European Union – NextGenerationEU (H.F.R.I. Project Number:15100).

References

[1] Tzamourani A., Taliadouros V., Paraskevopoulos I., Dimopoulou M. Developing a novel selection method for alcoholic fermentation starters by exploring wine yeast microbiota from Greece. Frontiers in Microbiology 2023; 14. https://doi.org/10.3389/fmicb.2023.1301325.

[2] Tzamourani, A., Evangelou, A., Ntourtoglou, G., Lytra, G., Paraskevopoulos, I., Dimopoulou, M. Effect of Non-Saccharomyces Species Monocultures on Alcoholic Fermentation Behavior and Aromatic Profile of Assyrtiko Wine. Appl. Sci. 2024; 14, 1522. https://doi.org/10.3390/app14041522.

[3] Tzamourani, A., Paramithiotis, S., Favier, M., Coulon, J., Moine, V., Paraskevopoulos, I., Dimopoulou, M. New Insights into the Production of Assyrtiko Wines from the Volcanic Terroir of Santorini Island Using Lachancea thermotolerans. Microorganisms 2024; 12, 786. https://doi.org/10.3390/microorganisms12040786.

Publication date: June 4, 2025

Type: Poster

Authors

Maria Dimopoulou1,*, Alexandra Evangelou1, Danai Gkizi1, Aikaterini Tzamourani1, Angeliki Kasioura1, Artemis Tsioka1, George Ntourtoglou1, Urska Vrhovsek2, Panagiotis Arapitsas1

1 Department of Wine, Vine and Beverage Sciences, University of West Attica
2 Metabolomic Unit, Edmund Mach Foundation, San Michele all Adige, Italy

Contact the author*

Keywords

wine lees, antimicrobial molecules, grapevine pathogens

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Sorption of aroma compounds by commercial specific yeast derivatives and the influence of polyphenols

Specific inactivated yeast derivatives (SYDs) from S. cerevisiae are obtained through thermal, mechanical, and enzymatic processes and are used to enhance wine quality.

Photodegradation of retsina wine: does pine resin protect against light-induced changes?

Retsina is a wine deeply rooted in Greek tradition but often misunderstood, largely due to the poor quality associated with past production. Historically, pine resin was used to seal wine transport containers, and over time, its distinctive aroma led to its intentional incorporation into winemaking.

The role of malolactic bacteria metabolism on the organoleptic qualities of wines

Lactic acid bacteria (LAB) are essential microorganisms in winemaking due to their role in malolactic fermentation (MLF) [1]. This process not only ensures the biological stabilization of wine through the decarboxylation of malic acid into lactic acid but also contributes to modifications in the chemical composition of the wine [2][3].

Geographical indication “Brandy Italiano”: study on the influence of wood barrel toasting and natural seasoning on endogenous and wood-derived compounds of aged distillates

The European geographical indication (GI) Brandy Italiano is exclusively reserved to brandy obtained in Italy from the distillation of wine from grapes grown and vinified in the national territory [1].

Towards faultless Grenache wines: impact of climate and maturity

Climate change is affecting wine production and inducing significant variability in wine composition between vintages.