terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Chemical and biochemical reactions, including grape and wine microorganism’s impact 9 Rationalising the impact of time, light, temperature, and oxygen on the evolution of rosé wines by means of a surface response methodology approach

Rationalising the impact of time, light, temperature, and oxygen on the evolution of rosé wines by means of a surface response methodology approach

Abstract

The widespread use of flint glass bottles for rosé wines is driven by consumer preference for color as a key choice factor. However, these bottles do not offer protection to light exposure that, along with temperature and oxygen, is the key factor affecting wine evolution, making rosé wines particularly prone to rapid degradation during storage. While the impact of light-struck fault has been extensively studied in white wines, research on rosé wines remains limited.

This study aimed to evaluate the relative effects of light, temperature, and oxygen on the color and volatile composition of rosé wines, employing a Response Surface Methodology (RSM) approach. Two different wines were subjected to varying levels of oxygen (1-5 mg/L), temperature (15-40°C), light (0-4000 lux), and time (15-60 days), resulting in 31 experimental points per wine. Key variables analyzed were free and total SO2, catechins, polyphenols, CIELAB color parameters, and 40 volatile organic compounds (VOCs), including low molecular weight sulfur compounds (LMWSCs), polyfunctional thiols (PFTs), terpenes, and norisoprenoids.

Results showed that free and total SO2were primarily affected by oxygen, while color parameters were influenced by light (L* and b*), temperature (b*), and oxygen (a*). LMWSCs were influenced by light, time, and temperature, with light affecting methanethiol and dimethyl disulfide, and temperature influencing dimethyl sulfide. PFTs and norisoprenoids were significantly influenced by light exposure, with TDN and vitispirane also affected by temperature, and β-damascenone by oxygen. Temperature also influenced the concentration of various terpenes, including nerol, linalool, β-myrcene, and β-pinene.

Within the experimental range studied, light exposure had the greatest impact on color, LMWSCs, PFTs, and norisoprenoids. Temperature played a key role in modulating the evolution of several volatile compounds over time, with its effect always associated with time, indicating a progressive impact throughout storage. In contrast, no interaction between light or oxygen and time was observed, suggesting that their effects were already completed before the minimum time assessed (15 days). These results provide an insight into the mechanisms involved in the evolution of rosé wines under different storage conditions.

References

Luzzini, G., Slaghenaufi, D., & Ugliano, M. (2022). Approaches to the classification of wine aroma ageing potential. Applications to the case of terpenoids in Valpolicella red wines. Oeno One, 56(3), 221–232. https://doi.org/10.20870/oeno-one.2022.56.3.5393

Ugliano, M. (2013). Oxygen contribution to wine aroma evolution during bottle aging. Journal of Agricultural and Food Chemistry, 61(26), 6125–6136. https://doi.org/10.1021/jf400810v

Publication date: June 4, 2025

Type: Poster

Authors

Leonardo Vanzo1,*, Margherita Diella1, Davide Slaghenaufi1, Maurizio Ugliano1

1 Department of Biotechnology, University of Verona, Italy

Contact the author*

Keywords

light-strike, oxidation, thermal stress, rosé wine, stress resistance

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Identification of novel aromatic precursors in winemaking grapes using an optimized fractionation and UHPLC-MS analysis

Winemaking grapes contain a diverse array of non-volatile precursors that become noticeable only after hydrolysis reactions or molecular rearrangements, during which aroma compounds are generated and released [1]. Among these, glycosidic precursors are the most abundant and play a key role in the development of wine aroma [2].

Peptidomics in the wine industry: literature perspectives on functional importance and analytical methods

Winemaking is a globally significant industry in the field of food technology (218 mhL of wine estimated for 2024 harvest) [1], which activity produces tons of by-products annually, including pomace (pulp, stems, seeds, skins), lees, organic acids, CO2, and water [2].

First large-scale study of thiol precursor distribution in red grape berry compartments and implications for thiol-type red wine production

Climate change and the growing need to reduce the use of phytosanitary products demand the exploration of disease-resistant grape varieties and/or adapted to drought conditions.

Effects of urea and nano-urea foliar treatments on the aromatic profile of Monastrell wines

Foliar application of urea has proven to be an effective method for increasing the amino acid content in grapes, especially when the vineyard has additional nitrogen needs. These treatments can prevent problems of stucking fermentation during winemaking.

Evaluation of shelf life of white wines in aluminium bottle: a modelling approach

Aluminum is a particularly interesting material for packaging because it is environmentally sustainable, lighter than standard glass bottles, and protective against light radiation [1].