terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Analysis and composition of grapes, wines, wine spirits 9 Development of an analytical method for the quantification of compounds responsible for the green character of wines: influence of ripeness on their levels

Development of an analytical method for the quantification of compounds responsible for the green character of wines: influence of ripeness on their levels

Abstract

Red wines can sometimes exhibit undesirable green, herbaceous, and vegetative aromas, negatively impacting their sensory profile and consumer acceptance. While certain grape varieties, such as Cabernet Sauvignon, are known for their green pepper notes due to the presence of pyrazines, these aromas are increasingly appearing in non-pyrazinic grape varieties with each vintage. This phenomenon may be linked to climate change and winemaking decisions aimed at avoiding excessively high alcohol levels. Beyond pyrazines, some studies have associated these green notes with the presence of specific carbonyl compounds [1, 2]. Traditionally, due to their poor chromatographic and spectrometric properties, these compounds have been analyzed using derivatizing agents [3], which require tedious analytical procedures. Furthermore, these methods shorten the operational lifetime of chromatographic columns. To address this, the objective of this work was to develop an analytical method to quantify carbonyl compounds while avoiding any derivatization steps. The proposed method includes a first extraction step using solid-phase extraction (SPE) prior to injection into a two-dimensional gas chromatographic system coupled with a mass spectrometer. Two different strategies for extracting the compounds were studied: deposition of 100 µL into Tenax tubes or the use of stir bar sorptive extraction (SBSE). Several parameters have been optimized, including breakthrough volume, elution conditions, solvent purge with Tenax tubes, and extraction conditions with SBSE. Good repeatability values, around 10% relative standard deviation, were found with both strategies. However, the repeatability worsened with the repeated use of the same Tenax tubes. This issue, along with the fact that better detection limits were achieved with SBSE, led to the decision to analyze real wine samples exclusively with this last strategy. Several wines made from the same grapes harvested at different ripeness levels were analyzed to study the evolution of carbonyl compounds with ripeness.

References

[1] Arias-Pérez, I., Sáenz-Navajas, M. P., de-la-Fuente-Blanco, A., Ferreira, V., & Escudero, A. (2021). Food Chemistry, 361, 130081.

[2] Mozzon, M., Savini, S., Boselli, E., & Thorngate, J. H. (2016). Italian Journal of Food Science, 28(2), 190–207.

[3] Zapata, J., Mateo-Vivaracho, L., Cacho, J., & Ferreira, V. (2010). Analytica Chimica Acta, 660(1–2), 197–205.

Publication date: June 4, 2025

Type: Poster

Authors

Ignacio Ontañón1,*, María Buñuel1, Vicente Ferreira1, Mónica Bueno1

1 Laboratorio de Análisis del Aroma y Enología. Departamento de Química Analítica. Facultad de Ciencias. Instituto Agroalimentario de Aragón –IA2- (Universidad de Zaragoza-CITA). C/ Pedro Cerbuna, 12. 50009. Zaragoza, Spain

Contact the author*

Keywords

gas chromatography, carbonyl compounds, green character, ripeness

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Investigating winemaking techniques for resistant varieties: the impact of prefermentative steps on must quality

Resistant grape varieties are gaining interest in viticulture due to their resistance to diseases, allowing to drastically reduces pesticides in viticulture [1].

Effects of winemaking variables on the chemical and sensory quality of Schiava wines up to one year storage in bottle

The interactive effects of three major enological variables were evaluated on the quality of Schiava wine up to one year of storage in bottle.

Impact of grape ripening and post-harvest withering on must composition and fermentation kinetics

Postharvest dehydration is a widely employed technique in winemaking to enhance sugar concentration and secondary metabolites from grapes. Different grape varieties exhibit varying responses in terms of dehydration rate and the resulting chemical composition.

Consumer perception and preferences regarding grape varieties resilient to climate change

Innovative solutions have been developed for winemakers to adopt in their cultivation practices [1]. Two of the implementations addressed in this study are the use of strains adapted to arid climates (AAC) and the use of varieties resistant to fungal diseases (PIWIs).

Identification of novel aromatic precursors in winemaking grapes using an optimized fractionation and UHPLC-MS analysis

Winemaking grapes contain a diverse array of non-volatile precursors that become noticeable only after hydrolysis reactions or molecular rearrangements, during which aroma compounds are generated and released [1]. Among these, glycosidic precursors are the most abundant and play a key role in the development of wine aroma [2].