terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Winemaking processes and oenological practices 9 Evaluating the effectiveness of alginic acid, sodium carboxymethylcellulose, and potassium polyaspartate in preventing calcium tartrate instability in wines

Evaluating the effectiveness of alginic acid, sodium carboxymethylcellulose, and potassium polyaspartate in preventing calcium tartrate instability in wines

Abstract

Calcium-induced instabilities present a major challenge in bottled wines, with calcium tartrate (CaT) precipitation becoming increasingly common due to rising calcium levels in grape must, largely driven by climate change. Although CaT is an insoluble salt, its instability— although less frequent than potassium hydrogen tartrate (KHT) precipitation—is more difficult to predict and control, as it develops gradually over time [1]. Spontaneous nucleation of CaT takes significantly longer than that of KHT, resulting in delayed precipitation, often occurring years after aging and typically post-bottling [2,3]. CaT instability occurs when ion concentrations exceed the solubility threshold, resulting in crystal formation. Unlike KHT, CaT precipitation is minimally affected by temperature, making cold stabilization ineffective [4]. Various additives, such as metatartaric acid and carboxymethylcellulose (CMC), have been used to mitigate this problem. However, the long-term effectiveness of metatartaric acid is limited due to hydrolysis [5]. In addition, potassium polyaspartate (KPA), commonly used as a KHT stabilizer, has been suggested to potentially reduce CaT stability in some cases. Given the need for effective and sustainable stabilization methods, research into alternative tartrate stabilizers is essential. Alginic acid, an approved processing aid in winemaking, represents a promising alternative to CMC and metatartaric acid due to its strong negative charge and ability to bind calcium ions. Already approved by the OIV [5], for wine clarification with no restrictions on use, alginic acid represents a clean-label solution for CaT stabilization. This study aim to evaluate the efficacy of alginic acid as a CaT stabilizer compared to CMC and to assess the effect of KPA on CaT instability. The stability of CaT was evaluated using the method described by Abguéguen and Boulton [1]. The degree of CaT instability in wine was determined according to Triulzi et al. [6] based on the decrease in calcium concentration after the addition of micronized calcium tartrate. The results showed that KPA did not increase CaT instability and, in some cases, even enhanced stability. Alginic acid demonstrated superior performance over both CMC and KPA, likely due to its higher zeta potential and stronger calcium ion complexation capacity. While these findings are highly promising, they primarily reflect short-term stabilization effects, highlighting the need for further long-term studies.

Funding

Project Vine&Wine Portugal—Driving Sustainable Growth Through Smart Innovation, Application No. C644866286 00000011, co-financed in the scope of the Mobilizing Agendas for Business Innovation, under Reg. (EU) 2021/241, in the Plano de Recuperação e Resiliência (PRR) to Portugal, na sua componente 5—Capitalização e Inovação Empresarial.

References

[1] Abguéguen, O., Boulton, R.B. (1993). Am. J. Enol. Vitic. 44, 65–75.

[2] Postel, W. (1983). Bull. OIV, 629–630, 554–568.

[3] Clark, J., Fugelsang, K., Gump, B. (1988). Am. J. Enol. Vitic., 39, 155–161

[4] Ribéreau-Gayon, P., Glories, Y., Maujean, A., Dubourdieu, D. (2006). Handbook of Enology. Volume 2. The Chemistry of Wine. Stabilization and Treatments, 2nd ed.; John Wiley & Sons Ltd Dunod: Paris, France.

[5] OIV. (2023). International Code of Oenological Practices; OIV: Paris, France.

[6] Triulzi, G.; Quinterno, G.; Scotti, B. (2021). Rev. Da Assoc. Port. De Enol. E Vitic., 69, 61–69.

Publication date: June 4, 2025

Type: Poster

Authors

Fernanda Cosme1,2,*, Luís Filipe-Ribeiro1, Ana Coixão1, Mário Bezerra1, Fernando M. Nunes1,3

1 Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro,5000-801 Vila Real, Portugal
2 Biology and Environment Department, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
3 Chemistry Department, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal

Contact the author*

Keywords

wine, tartaric instability, calcium tartrate instability, alginic acid

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Quality assessment of partially dealcoholized and dealcoholized red, rosé, and white wines: physicochemical, color, volatile, and sensory insights

The global non-alcoholic wine market is projected to grow from USD 2.7 billion in 2024 to USD 6.97 billion by 2034, driven by health awareness, lifestyle shifts, and religious factors [1-3]. Consequently, the removal of alcohol can significantly alter the key quality parameters of wine.

Exploiting the diversity in spent yeast for its valorisation towards producing yeast-derived processing aids

In view of sustainability and zero-waste initiatives, the valorisation of sidestreams is a key emerging topic in the wine industry.

Revisiting esters hydrolysis in young white wines

Esters play an essential role in the young white wines’ fruity expression, particularly the groups of ethyl esters of fatty acids (EEFAs) and higher alcohol acetates (HAAs) [1]. However, generally, these groups of esters decrease relatively fast during the first two years of ageing [1, 2].

Study of Malvasia di Candia Aromatica shelf-life: effect of time and temperature on aroma compounds through an HS-SPME GCxGC-Ms approach

Young white wines should be consumed within a short time after bottling to avoid loss of their fresh, fruity attributes. Shelf-life of white wines can be extended if they are stored under suitable conditions of time and temperature prior to consumption.

Sensory changes in wines associated with the ripening of Grenache grapes from vineyards in different climatic zones

Climate change is introducing a high variability on grape ripening, causing uncertainty, excessive spending on pesticides and eventually frustrating results in terms of the quality of the vintage, with the increasingly frequent appearance of aromatic problems associated with overripeness, raisining and greenness, which sometimes only appear in bottled wines.