terclim by ICS banner
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2025 9 Winemaking processes and oenological practices 9 Evaluating the effectiveness of alginic acid, sodium carboxymethylcellulose, and potassium polyaspartate in preventing calcium tartrate instability in wines

Evaluating the effectiveness of alginic acid, sodium carboxymethylcellulose, and potassium polyaspartate in preventing calcium tartrate instability in wines

Abstract

Calcium-induced instabilities present a major challenge in bottled wines, with calcium tartrate (CaT) precipitation becoming increasingly common due to rising calcium levels in grape must, largely driven by climate change. Although CaT is an insoluble salt, its instability— although less frequent than potassium hydrogen tartrate (KHT) precipitation—is more difficult to predict and control, as it develops gradually over time [1]. Spontaneous nucleation of CaT takes significantly longer than that of KHT, resulting in delayed precipitation, often occurring years after aging and typically post-bottling [2,3]. CaT instability occurs when ion concentrations exceed the solubility threshold, resulting in crystal formation. Unlike KHT, CaT precipitation is minimally affected by temperature, making cold stabilization ineffective [4]. Various additives, such as metatartaric acid and carboxymethylcellulose (CMC), have been used to mitigate this problem. However, the long-term effectiveness of metatartaric acid is limited due to hydrolysis [5]. In addition, potassium polyaspartate (KPA), commonly used as a KHT stabilizer, has been suggested to potentially reduce CaT stability in some cases. Given the need for effective and sustainable stabilization methods, research into alternative tartrate stabilizers is essential. Alginic acid, an approved processing aid in winemaking, represents a promising alternative to CMC and metatartaric acid due to its strong negative charge and ability to bind calcium ions. Already approved by the OIV [5], for wine clarification with no restrictions on use, alginic acid represents a clean-label solution for CaT stabilization. This study aim to evaluate the efficacy of alginic acid as a CaT stabilizer compared to CMC and to assess the effect of KPA on CaT instability. The stability of CaT was evaluated using the method described by Abguéguen and Boulton [1]. The degree of CaT instability in wine was determined according to Triulzi et al. [6] based on the decrease in calcium concentration after the addition of micronized calcium tartrate. The results showed that KPA did not increase CaT instability and, in some cases, even enhanced stability. Alginic acid demonstrated superior performance over both CMC and KPA, likely due to its higher zeta potential and stronger calcium ion complexation capacity. While these findings are highly promising, they primarily reflect short-term stabilization effects, highlighting the need for further long-term studies.

Funding

Project Vine&Wine Portugal—Driving Sustainable Growth Through Smart Innovation, Application No. C644866286 00000011, co-financed in the scope of the Mobilizing Agendas for Business Innovation, under Reg. (EU) 2021/241, in the Plano de Recuperação e Resiliência (PRR) to Portugal, na sua componente 5—Capitalização e Inovação Empresarial.

References

[1] Abguéguen, O., Boulton, R.B. (1993). Am. J. Enol. Vitic. 44, 65–75.

[2] Postel, W. (1983). Bull. OIV, 629–630, 554–568.

[3] Clark, J., Fugelsang, K., Gump, B. (1988). Am. J. Enol. Vitic., 39, 155–161

[4] Ribéreau-Gayon, P., Glories, Y., Maujean, A., Dubourdieu, D. (2006). Handbook of Enology. Volume 2. The Chemistry of Wine. Stabilization and Treatments, 2nd ed.; John Wiley & Sons Ltd Dunod: Paris, France.

[5] OIV. (2023). International Code of Oenological Practices; OIV: Paris, France.

[6] Triulzi, G.; Quinterno, G.; Scotti, B. (2021). Rev. Da Assoc. Port. De Enol. E Vitic., 69, 61–69.

Publication date: June 4, 2025

Type: Poster

Authors

Fernanda Cosme1,2,*, Luís Filipe-Ribeiro1, Ana Coixão1, Mário Bezerra1, Fernando M. Nunes1,3

1 Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro,5000-801 Vila Real, Portugal
2 Biology and Environment Department, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
3 Chemistry Department, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal

Contact the author*

Keywords

wine, tartaric instability, calcium tartrate instability, alginic acid

Tags

IVES Conference Series | Macrowine | Macrowine 2025

Related articles…

Sensory analysis in oenology: the role of methodological differences in expert panel evaluations

Sensory analysis is an essential component of oenology, offering valuable insights into wine quality that influence decision-making in viticulture and winemaking.

Peptidomics in the wine industry: literature perspectives on functional importance and analytical methods

Winemaking is a globally significant industry in the field of food technology (218 mhL of wine estimated for 2024 harvest) [1], which activity produces tons of by-products annually, including pomace (pulp, stems, seeds, skins), lees, organic acids, CO2, and water [2].

A facile and robust method for the quantification of polyphenols in red wine via NMR

Nuclear magnetic resonance spectroscopy (NMR) is a high-tech analytical method that recently found its way into the field of wine analysis with special focus on wine authentication.

The role of malolactic bacteria metabolism on the organoleptic qualities of wines

Lactic acid bacteria (LAB) are essential microorganisms in winemaking due to their role in malolactic fermentation (MLF) [1]. This process not only ensures the biological stabilization of wine through the decarboxylation of malic acid into lactic acid but also contributes to modifications in the chemical composition of the wine [2][3].

Investigating kokumi flavour oligopeptides in wine

Kokumi is a complex sensation perceived as enhanced palatability. Under the influence of kokumi substances, foods/beverages tastes become more flavorful with increased intensity, spread, continuity, richness, harmony, and punch which are the six related characteristics corresponding to the Kokumi sensory concept [1].