Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Ancient and recent construction of Terroirs 9 Towards a spatial analysis of antique viticultural areas: the case study of Amos (Turkey) and some other places

Towards a spatial analysis of antique viticultural areas: the case study of Amos (Turkey) and some other places

Abstract

Interpretation of ancient texts, such as the Amos epigraphic farming leases, questions both locations and spatial extents of the viticultural area, as well as soils, landscapes, cropping methods and the quality of grapes in the antique Greece. These issues may be partially answered undertaking spatial analysis of soils and landscape of the present day through digital morphometric and multispectral satellite data. This paper aims at discussing the possible locations of the Amos antique district and identifying the additional data and methodological developments that will be needed for a further zoning of its componing terroir units. It compares the viticultural and geographical details given in the leases prescriptions with a preliminary spatial analysis of the Amos region (Bozburun peninsula, southwest Turkey) using digital morphometric ASTER GDM data and Landsat ETM+ satellite data. The viticultural prescriptions in the Amos epigraphic farming leases discriminate between vineyards grown in “plain” and vineyards grown in “rocky terrain”. Considering both distances to coast, distances to the Amos cape, regional morphology, geology, present land use together, we consider that the antique Amos vineyards were located along the coastline in the Kumlubük bay at the foot of the Amos cape. Some other antique places are also discussed with a spatial analysis perspective.

DOI:

Publication date: August 26, 2020

Issue: Terroir 2012

Type: Article

Authors

Emmanuelle VAUDOUR (1,2) and Thibaut BOULAY (3)

(1) AgroParisTech, UMR 1091 EGC, F-78850 Thiverval-Grignon, France
(2) INRA, UMR 1091 EGC, F-78850 Thiverval-Grignon, France
(3) Université François Rabelais-Tours, EA 4247 “Centre de Recherche sur les Mondes Anciens, l’Histoire des Villes et l’Alimentation” (CeRMAHVA), 3, rue des Tanneurs, BP 4103, F-37041 Tours Cedex 1, France

Contact the author

Keywords

antique vineyards, terroirs, spatial analysis, ancient texts, Aegean world

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

A fast and sensitive method for total tannin determination in wine based on the substoichiometric quenching of silicon-rhodamine conjugates

Tannins are chemically diverse polyphenols contributing to important sensory attributes of food and beverages. In wine, their structure and quantity depend on several factors, such as the grape variety, climate, soil, viticultural and enological practices and the wine-aging process.

Release and perception of γ-nonalactone and massoia lactone in the red wine matrix: impact of ethanol and acidity

Climate change (CC) is altering grape/wine composition, leading to challenges in maintaining wine sensory quality.

Role of climate on grape characteristics of “Moscato bianco” in Piemonte (Italy)

L’objectif de l’étude était de connaître le rôle du climat sur les aspects phénologiques du cépage « Moscato bianco » dans les différentes zones de production du vin Moscato d’Asti aocg en Piemonte (Italie) et ses effets sur l’époque de vendange. La représentation cartographique ( échelle 1 :25000) de exposition, altitude, climat, index

Consumer perception of wine bottle weight and its impact on sustainability

In the context of sustainability, this study evaluated consumer perception regarding the impact of glass bottle weight on wine valuation.

Genotypic variability in root architectural traits and putative implications for water uptake in grafted grapevine

Root system architecture (RSA) is important for soil exploration and edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The objectives of this study were to determine genetic differences in the root architectural traits and their relationships to water uptake in two Vitis rootstocks genotypes (RGM, 140Ru) differing in their adaptation to drought. Young rootstocks grafted upon the Riesling variety were transplanted into cylindrical tubes and in 2D rhizotrons under two conditions, well watered and moderate water stress. Root traits were analyzed by digital imaging and the amount of transpired water was measured gravimetrically twice a week. Root phenotyping after 30 days reveal substantial variation in RSA traits between genotypes despite similar total root mass; the drought-tolerant 140Ru showed higher root length density in the deep layer, while the drought-sensitive RGM was characterised by shallow-angled root system development with more basal roots and a larger proportion of fine roots in the upper half of the tube. Water deficit affected canopy size and shoot mass to a greater extent than root development and architectural-related traits for both 140Ru and RGM, suggesting vertical distribution of roots was controlled by genotype rather than plasticity to soil water regime. The deeper root system of 140Ru as compared to RGM correlated with greater daily water uptake and sustained stomata opening under water-limited conditions but had little effect on above-ground growth. Our results highlight that grapevine rootstocks have constitutively distinct RSA phenotypes and that, in the context of climate change, those that develop an extensive root network at depth may provide a desirable advantage to the plant in coping with reduced water resources.