Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Ancient and recent construction of Terroirs 9 Towards a spatial analysis of antique viticultural areas: the case study of Amos (Turkey) and some other places

Towards a spatial analysis of antique viticultural areas: the case study of Amos (Turkey) and some other places

Abstract

Interpretation of ancient texts, such as the Amos epigraphic farming leases, questions both locations and spatial extents of the viticultural area, as well as soils, landscapes, cropping methods and the quality of grapes in the antique Greece. These issues may be partially answered undertaking spatial analysis of soils and landscape of the present day through digital morphometric and multispectral satellite data. This paper aims at discussing the possible locations of the Amos antique district and identifying the additional data and methodological developments that will be needed for a further zoning of its componing terroir units. It compares the viticultural and geographical details given in the leases prescriptions with a preliminary spatial analysis of the Amos region (Bozburun peninsula, southwest Turkey) using digital morphometric ASTER GDM data and Landsat ETM+ satellite data. The viticultural prescriptions in the Amos epigraphic farming leases discriminate between vineyards grown in “plain” and vineyards grown in “rocky terrain”. Considering both distances to coast, distances to the Amos cape, regional morphology, geology, present land use together, we consider that the antique Amos vineyards were located along the coastline in the Kumlubük bay at the foot of the Amos cape. Some other antique places are also discussed with a spatial analysis perspective.

DOI:

Publication date: August 26, 2020

Issue: Terroir 2012

Type: Article

Authors

Emmanuelle VAUDOUR (1,2) and Thibaut BOULAY (3)

(1) AgroParisTech, UMR 1091 EGC, F-78850 Thiverval-Grignon, France
(2) INRA, UMR 1091 EGC, F-78850 Thiverval-Grignon, France
(3) Université François Rabelais-Tours, EA 4247 “Centre de Recherche sur les Mondes Anciens, l’Histoire des Villes et l’Alimentation” (CeRMAHVA), 3, rue des Tanneurs, BP 4103, F-37041 Tours Cedex 1, France

Contact the author

Keywords

antique vineyards, terroirs, spatial analysis, ancient texts, Aegean world

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Scalable asymptomatic grapevine leafroll virus complex-3 detection through integrated airborne imaging spectroscopy, autonomous robotics, and cloud computing

The past three decades of terrestrial remote sensing research have delivered unprecedented insights into our fundamental ability to detect, quantify, and differentiate plant disease (Gold 2021). However, much of our fundamental knowledge in this domain has come from studies in non-agricultural systems and until recently, most agricultural studies, when extant, have focused on tree crops where canopy closure and large plot and plant size facilitate stress detection at low spatial resolution. Recent engineering innovations and advancements in constellation architecture design have refined the accuracy and scalability of airborne and spaceborne sensing platforms, enabling us to monitor diverse specialty crops, including grapevine, planted in smaller, spatially varied fields.

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines.

Grape phylloxera leaf-feeding populations in commercial vineyards – a new biotype ?

Grape Phylloxera (Daktulosphaira vitifoliae Fitch) ordinarily has great difficulty establishing leaf galls on the European Grapevine (VitisviniferaL.). Yet populations of leaf-feeding Phylloxera are increasingly being observed throughout commercial vineyards world-wide. Effective plant protection strategies including quarantine actions are currently missing to fight, grape phylloxera populations in affected vineyards and combat linked negative effects on vines and yield. Contrary to the otherwise mandatory continuous infestation pressure from externally established populations (e.g. from populations developed on rootstock foliage or other interspecific hybrids, these leaf-feeding populations seem to establish themselves annually.

Utilizing ozone for the management of powdery mildew (Erysiphe necator Schwein.) in vineyards: potential and challenges

Powdery mildew, caused by fungal pathogens, poses a significant threat to grapevines in the DOCa Rioja region. In efforts to improve control strategies while reducing reliance on conventional phytosanitary products, ozone could constitute a potential alternative. However, it has short persistence, thus requiring frequent treatments. This study aimed to assess the suitability of ozone as an active substance for controlling powdery mildew within a phytosanitary strategy aimed at reducing conventional phytosanitary product usage. The strategy integrating ozone with conventional products yielded powdery mildew levels comparable to conventional treatments in both disease incidence and severity.

Sensory differences of Pinot noir wines from willamette valley subregions

Wines from different regions or AVAs have been found to have sensory differences, as these areas are typically located quite far apart and have dramatically different climates, soils and other terroir factors.