terclim by ICS banner
IVES 9 IVES Conference Series 9 Implementing VIS-NIR spectroscopy as a rapid and non-intrusive technique for assessing anthocyanin and phenolic concentrations in Vitis vinifera L. Grenache whole grape berries

Implementing VIS-NIR spectroscopy as a rapid and non-intrusive technique for assessing anthocyanin and phenolic concentrations in Vitis vinifera L. Grenache whole grape berries

Abstract

Anthocyanins and phenolic compounds play a crucial role in winemaking, contributing to the profile, flavor, color, texture, and stability of wine. Grape clusters, specifically Vitis vinifera L. cv. Grenache, were handpicked from a commercial vineyard sited in Tudelilla, La Rioja, Spain (42°18′ 52.26″, Long. -2°7′ 59.15″, Alt. 582 m) on five distinct dates from veraison to harvest during the 2015 season. Non-contact spectral measurements were conducted on intact grape berries using a VIS-NIR spectrometer operating in the 570 – 1000 nm spectral range under controlled laboratory conditions, positioned at a distance of 25 cm from the berries. The quantification of 16 anthocyanins and phenols in 120 grape clusters was performed using HPLC, established as the reference method for validating the spectral tool. Data exploration and prediction of phenolic concentration in grape berries were conducted through Principal Component Analysis (PCA) and Modified Partial Least Squares (MPLS) regression. The best calibration and cross-validation models were built for total monomeric anthocyanins, nonacylated anthocyanins and cyanidin 3-glucoside with determination coefficients (R2cv values above 0.86, while the standard errors of cross validation (SECV) were 0.058 mg/g, 0.052 mg/g and 0.001 mg/g respectively. Of the other phenolic groups, the model for total flavanol yielded R2cv = 0.66 and SECV = 0.023 mg/g. This technology shows high potential for the selection and classification of berries throughout ripening in the vineyard or upon grape reception at the winery. Its application could help tailoring the oenological fate of grape berries to various wine qualities or styles.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Juan Fernández-Novales1,2, Ignacio Barrio1,2, Leticia Martínez-Lapuente1,2, Zenaida Guadalupe1,2; María Paz Diago,1,2*

1 Department of Agriculture and Food Science. University of La Rioja. C/Madre de Dios 53. 26007. Logroño, (La Rioja) Spain
2 Institute of Sciences of Vine and Wine (CSIC, University of La Rioja, La Rioja Government) Finca La Grajera. Ctra. de Burgos Km 6. 26007. Logroño. (La Rioja). Spain

Contact the author*

Keywords

Berry ripening, Non-invasive technologies, Anthocyanin, Phenols, Chemometrics

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

How to deal with the Green Deal – Resistant grapevine varieties to reduce the use of pesticides in the EU

With its Farm-to-Fork Strategy, which is a part of the European Green Deal, the European Union aims at reducing the amount of pesticides used in agriculture by 50% until 2030. As viticulture uses around 70% of the fungicides in the EU, there is substantial pressure on winemakers to reduce their pesticide input. On top of the political goal, winegrowers face increased pressure from the public demanding a more sustainable production of wine.

Oxidation vs reduction: the fate of tannins, pigments, vscs, color,SO2 and metabolomic fingerprint

The management of oxygen during winemaking and aging is a big issue in order to achieve high quality wines. The correct amount of O2 improves aroma, astringency, bitterness and color, however an excess of oxygen promotes the appearance of yellow

Measurement of synthetic solutions imitating alcoholic fermentation by dielectric spectroscopy

Having the possibility to use a wide spectrum of elecromagnetic waves, dielectric spectroscopy is a technique commonly used for electrical characterization of dielectrics or that of materials with high energy storage capacity, just to name a few. Based on the electrical excitation of dipoles (polymer chains or molecules) or ions in relation to the characteristics of a weak external electric field, this method allows the measurement of the complex permittivity or impedance of polarizable materials, each component having a characteristic dipole moment.In recent years, the food industry has also benefited from the potential offered by this technique, whether for the evaluation of fruit quality or during the pasteurization of apple juice [1-3]. As the tests are fast and do not destroy the products, dielectric spectroscopy proved to be an experimental tool suitable for online measurements as well as long-term monitoring.

Monitoring of mannoprotein cessions during wine aging on lees: development of a simple enzymatic method

Mannoproteins are polysaccharides released by Saccharomyces cerevisiae yeast during alcoholic fermentation or by enzymatic action during aging on yeast lees (autolysis). These molecules play a major role in wine characteristics processing, namely, in the tartaric stabilization and protein haze prevention; moreover, they improve color stability and reduce astringency.

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.