Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Ancient and recent construction of Terroirs 9 Legal protection of the vitivinicultural terroirs in Yamanashi Prefecture, Japan

Legal protection of the vitivinicultural terroirs in Yamanashi Prefecture, Japan

Abstract

This study analyses the actual situation regarding the legal protection of the vitivinicultural terroirs in Yamanashi Prefecture, the centre of Japanese wine industry with more than 150 years of wine-making tradition. Wines produced with grapes harvested in Yamanashi are identified by its sub-region, village and parcel. Such practice of geographical identification allows the development of regional perceptions and differentiation of terroirs. However, the legal protection for denomination of wine is not sufficient in Japan because of the lack of national legislation. Currently, the local government of Yamanashi and the Winemakers Association are working together to achieve the registration of geographical indication of “Yamanashi”, which is indispensable for legal protection of its vitivinicultural terroirs. In 2010, Koshu City of Yamanashi Prefecture created a system of the appellation of origin which necessitates them to control for the origin of grapes in all parcels. These recent efforts are important to increase the awareness of Yamanashi wine in domestic and global markets and to propagate the notion of terroir amongst the Japanese consumers.

DOI:

Publication date: August 26, 2020

Issue: Terroir 2012

Type: Article

Authors

Kensuké EBIHARA1

Meiji-Gakuin University, Faculty of Law 1-2-37 Shirokane-dai, Minato-ku, Tokyo, 108-8636, JAPON

Contact the author

Keywords

geographical indication, legal protection, appellation of origin

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

The antioxidant properties of wine lees extracts in model wine

While the ethanol and tartaric acid contained in wine lees are typically recovered by distilleries, the remaining solid fraction (yeast biomass) is usually disposed of, thus negatively affecting the overall sustainability of the wine industry.

Aromas of Riesling wine: impact of bottling and storage conditions

Storage temperature and bottling parameters are among the most important factors, which influence the development of wine after bottling. It is well studied that higher storage temperatures speed up chemical reactions and results in faster wine aging [1,2]. It is also known that higher SO2 level and lower oxygen content provide better protection and longer shelf-life for the wine. At the same time, the mechanisms of chemical transformations of wine aromas during the aging process are not fully understood. In particular, how oxidation reactions contribute to the transformations of varietal aroma compounds.In the present study [3], we investigated the development of Riesling wine depending on a series of bottling conditions, which differed in the free SO2 level in wine (low—13 mg/L, medium—24 mg/L, high—36 mg/L), CO2 treatment of the headspace.

Is it possible to approximate the technological and phenolic maturity of grapes by foliar application of elicitors?

The increase in the temperature and the more severe water stress conditions, trends observed in recent years as a consequence of climate change, are leading a mismatch between the technological and phenolic maturity of grapes

Raffinose: a sweet solution for grapevine drought tolerance

Water tolerance in plants is often associated with the accumulation of osmotic protectants, which are secondary metabolites that can help the plant to cope with water stress. One of the key osmotic protectants is a sugar called Raffinose, which is synthesized by a family of enzymes called Raffinose synthases. In this work, we focused on one of these enzymes, VviRAF2, which is a gene that shows different expression levels and genetic variants (SNPs) among different grapevine cultivars, ranging from tolerant to susceptible to water stress, and the transcription factors that may regulate the expression of this gene family.

Integrating RO concentrate in viticultural irrigation for sustainable urban water reclamation

Grapevines (Vitis vinifera L.) require precise irrigation to maintain yield and quality, and the increasing use of reclaimed desalinated water for irrigation raises concerns about the accumulation of reverse osmosis concentrate (ROC), a high-salinity byproduct with no sustainable disposal solution.