Terroir 2012 banner
IVES 9 IVES Conference Series 9 Typology of Terroirs around the world

Typology of Terroirs around the world

Abstract

It seems implausible that the geographical development of the vineyards could have been affected by a shift in the positions of the Earth’continents that started 250 million years ago. At one end of the geological timescale there are landscapes shaped by men, at the other, there are monumental upheavals so slow that they defy the imagination. In fact, the succession of landslides, collisions, eruptions, and subductions that marked the Paleozoic and Mesozoic eras and the Tertiary period was indeed the original source of the rocks and great masses that were then chiseled into shape 2 million years ago, at the start of the Quaternary period, to form the wine-growing landscapes that we see today. The study of these different phenomena allows to offer a classification, a typography of vitivinicultural terroirs across the world according to the history of geology and geomorphology of the different vitivinicultural areas.

DOI:

Publication date: August 26, 2020

Issue: Terroir 2012

Type: Article

Authors

Jacques FANET

Mas d’Arlenques 3 chemin des Combes d’Arlenques 34800 ASPIRAN – FRANCE

Contact the author

Keywords

Continental drift, geology, geomorphology, terroir

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

A methyl salicylate glycoside mapping of monovarietal Italian white wines.

Among the main plant secondary metabolites, glycosides have a key-role in wine chemistry. Glycosides are non-volatile complex composed of a non-sugar component (aglycone) bound to one or more carbohydrates.

Techniques of delimitation in France

La pratique de la délimitation des aires des Appellations d’Origine Contrôlées françaises découle de la définition de la notion de terroir en Appellation

Environmental and viticultural practice effects on the phenolic composition of grapes: impact on wine sensory properties

Grape phenolic compounds are located in the internal layers of grape skins and seeds. They are synthesized via the phenyl-propanoid biosynthetic pathway which is modulated by both biotic and abiotic factors.

What about oxygen transfer during wine aging in barrels?

During wine aging, several complex phenomena of gas transfer take place in barrels due to the wine/oak contact. The efficiency of this gas transfer varies according to oak wood’s intrinsic physical properties. This research aims to better understand oxygen transfer phenomena through dry oak staves and especially through stave gaps, in order to reevaluate the importance of barrel-making on a barrel’s supply of oxygen. Experimentation was based on the development of an innovative permeameter of laboratory scale, for which the principal operating conditions concerning applied pressure, the choice of liquid phase/gas phase, and the grain type of oak are taken into account and investigated. With a specially developed tightening system, the existing pressure at stave gaps in a barrel could be reproduced on a laboratory scale in order to estimate its influence on oxygen transfer efficiency.

Barrel-to-Barrel Variation of Color and Phenolic Composition in Barrel-Aged Red Wine

Tangible variation of sensory characteristics is often perceived in wine aged in similar barrels. This variation is mostly explained by differences in the wood chemical composition, and in the production of the barrels. Despite these facts, the literature concerning barrel-to-barrel variation and its effect on wine sensory and chemical characteristics is very scarce [1]. In this study, the barrel-to-barrel variation in barrel-aged wines was examined in respect of the most important phenolic compounds of oenological interest and chromatic characteristics, considering both the effects of the (individual) barrel and cooperage. A red wine was aged in 49 new medium-toasted oak (Quercus petraea) barrels, from four cooperages, for 12 months