terclim by ICS banner
IVES 9 IVES Conference Series 9 Estimation of stomatal conductance and chlorophyll fluorescence in Croatian grapevine germplasm under water deficit    

Estimation of stomatal conductance and chlorophyll fluorescence in Croatian grapevine germplasm under water deficit    

Abstract

Water deficit profoundly impacts the quality of grapes and results in considerable reductions in crop yield. First symptoms manifest with reduced stomatal conductance and transpiration, accompanied by the wilting of apical leaves and tendrils. So far, there is no available data on the water stress response in Croatian grapevine germplasm. Therefore, objective of this study was to determine influence of genotype and treatment on stomatal conductance (gsw), transpiration (E), electron transport rate (ETR), and quantum efficiency in light (PhiPS2). In this research we observed the initial response to water deficit of 84 unique genotypes, 70 Vitis vinifera subsp. vinifera and 14 Vitis vinifera subsp. sylvestris accessions. The experiment was conducted in a greenhouse in both 2022 and 2023, involving self-rooted cuttings exposed to water stress and compared to a well-watered control. Multifactorial analysis of variance was used to examine the effects of genotype, treatment, replicate, date and time of measurement on gsw, E, ETR, PhiPS2. In both years gsw and E were significantly influenced by all parameters except replicate, while ETR wasn’t significantly influenced by treatment in second year and PhiPS2 in first year. Due to the observed significance of the interaction between genotype and treatment across all parameters in both years, we employed the pairwise comparisons of treatment levels within each genotype with Bonferroni correction. In this study, a non-destructive high-throughput method for rapid screening of the initial physiological response to water deficit is briefly presented, in which the grapevine genotypes studied are divided into two distinct groups.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Luka Marinov1*, Domagoj Ivan Žeravica2, Katarina Lukšić1, Ana Mucalo1, Maja Ozretić Zoković1, Toni Safner3, Goran Zdunić1

1 Institute for Adriatic Crops and Karst Reclamation, Split, Croatia
2 University of Dubrovnik, Dubrovnik, Croatia
3 University of Zagreb, Faculty of Agriculture, Zagreb, Croatia

Contact the author*

Keywords

water stress, genotype, stomatal conductance, sylvestris, vinifera

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Radiation-associated effects on regulated deficit irrigation management in grapevine cv. Cabernet Sauvignon

The main challenge of regulated deficit irrigation (RDI) research is to isolate the factors that come with RDI, the direct effect of plant water status from the indirect ones like increased radiation and temperature changes on the cluster zone. This study aims to isolate the effects of vine water status from the effects of increased radiation on the phenolic composition of grapes subjected to RDI.
A three-year study on an RDI experiment where radiation was controlled was implemented in a commercial vineyard of Cabernet Sauvignon in Chile. Four RDI treatments based on partial evapotranspiration (ET) irrigation were established. Irrigation treatments were 100% ET, 70% ET, 50-100% ET (50% ET before veraison and 100% ET afterward), and 35-100% ET (35% ET before veraison and 100% ET afterward).

Terroir analysis and its complexity

Terroir is not only a geographical site, but it is a more complex concept able to express the “collective knowledge of the interactions” between the environment and the vines mediated through human action and “providing distinctive characteristics” to the final product (OIV 2010). It is often treated and accepted as a “black box”, in which the relationships between wine and its origin have not been clearly explained. Nevertheless, it is well known that terroir expression is strongly dependent on the physical environment, and in particular on the interaction between soil-plant and atmosphere system, which influences the grapevine responses, grapes composition and wine quality. The Terroir studying and mapping are based on viticultural zoning procedures, obtained with different levels of know-how, at different spatial and temporal scales, empiricism and complexity in the description of involved bio-physical processes, and integrating or not the multidisciplinary nature of the terroir. The scientific understanding of the mechanisms ruling both the vineyard variability and the quality of grapes is one of the most important scientific focuses of terroir research. In fact, this know-how is crucial for supporting the analysis of climate change impacts on terroir resilience, identifying new promised lands for viticulture, and driving vineyard management toward a target oenological goal. In this contribution, an overview of the last findings in terroir studies and approaches will be shown with special attention to the terroir resilience analysis to climate change, facing the use and abuse of terroir concept and new technology able to support it and identifying the terroir zones.

The moment of preharvest elicitor application influence its final effect on winegrapes quality

Phenolic compounds are secondary metabolites of grapes. Plants produce a wide variety of this type of metabolites through diverse biosynthesis pathways and their production is sometimes a response to external stimuli, either environmental or biotic stresses. Some of them may act as chemical defenses against pathogens or herbivores and their synthesis is increased when the attack exists. However, it is remarkable that the synthesis of these interesting compounds can be activated even when the stimulus is not present, with the use of elicitors. These are substances that when applied exogenously trigger the biosynthetic pathways conducting to the synthesis of these defense compounds.

Optimizing protocol for a rapid and cost effective DNA isolation for Marker Assisted Selection pipeline

Grapevine is a plant that holds significant socioeconomic importance due to its production of grapes for fresh consumption, wines, and juices. However, climate changes and susceptibility to diseases pose a threat to the quality and yield of these products. The breeding of new genotypes that are resistant/tolerant to biotic and abiotic stresses is essential to overcome the impact of climate changes. In this regard, Marker-assisted selection (MAS), which uses DNA markers, is a crucial tool in breeding programs. The efficiency and economy of this method depend on finding rapid DNA isolation methods.

Frost variability in the Champagne vineyard: probability calendar

Dans le vignoble champenois, le risque thermique associé au gel des bourgeons au printemps et en hiver est très mal connu et ne peut être envisagé qu’à l’échelle locale, en raison d’une variabilité spatiale forte. L’objectif de l’étude est d’appréhender ce risque de façon fiable et pluri locale en utilisant le réseau de stations météos récemment implanté.