Terroir 2012 banner
IVES 9 IVES Conference Series 9 Aromatic stability of Syrah and Petit Verdot tropical wines from Brazil

Aromatic stability of Syrah and Petit Verdot tropical wines from Brazil

Abstract

The production of fine wines in the Sub-middle of the São Francisco River Valley, Northeast of Brazil, is relatively recent, about twenty-five years ago. This region presents different characteristics, with a tropical semiarid climate, in a flat landscape. Presenting high annual average temperature, solar radiation and water in abundance for irrigation, it’s possible the scaling the grape harvests for winemaking throughout the year, allowing to obtain until two harvests per year. Several factors may affect the aromatic compounds in wines, such as viticulture practices, climatic conditions, cultivars and winemaking process. This study aimed to evaluate the aromatic stability of Syrah and Petit Verdot tropical wines elaborated in two different periods in the year. The grapes were harvested in the first and second semesters of 2009, in June and November. The wines were elaborated and then, they were bottled and analyzed in triplicate, thirty days and one year after bottling, by gas chromatography with ionization detector flame (GC-FID), to evaluate the profile and the stability of the aroma compounds. Principal component analysis was applied to discriminate between wine samples and to find the compounds responsible by the variability. The results showed that Syrah and Petit Verdot tropical wines presented different responses, for stability of higher alcohols, esters and carboxylic acids.

DOI:

Publication date: August 26, 2020

Issue: Terroir 2012

Type: Article

Authors

Ana Julia de Brito ARAÚJO (1), Regina VANDERLINDE (2), Juliane Barreto de OLIVEIRA (3), Gildeilza Gomes de OLIVEIRA (4), Aline Camarão Telles BIASOTO (5), Giuliano Elias PEREIRA (6)

(1) Federal Institute of Education Science and Technology of Pernambuco, Brazil.
(2) University of Caxias do Sul-RS, Brazil
(3) State University of Bahia, Juazeiro-BA, Brazil
(4) CNPq scholarship, Embrapa Semiarid, Petrolina, Brazil
(5) Brazilian Agricultural Research Corporation – Embrapa Tropical Semiarid
(6)Brazilian Agricultural Research Corporation – Embrapa Grape & Wine/Tropical Semiarid, P.O. Box 23, 56.302-970, Petrolina-PE, Brazil

Contact the author

Keywords

grapes, red wines, tropical climat, aroma

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Rapid optical method for tannins estimation in red wines

In this work, an innovative analytical method has been proposed for fast and reliable in-line analysis of tannins in wines; the method is fast, does not require sample preparation and is based on the selective reactivity of tannins in a mixture containing proteinaceous matter (i.e. gelatin), under pH 3.5, resulting in the formation of white cloudiness.

Characterization of the mechanisms underlying the tolerance of genotypes of Uva Cão to climate change: A transcriptomic and genomic study

Climate change has been influencing viticulture and changing wine profiles in the past years, and effects are expected to get worse.

A comparative study on physiological responses to drought in wild Vitis species 

The crossings of three wild Vitis species are commonly used as rootstocks in wine production worldwide. Factors such as disease resistance and vigor are most important for their selection.
With climate change extending drought conditions and water limitations, the selection of rootstocks conferring increased tolerance to drought takes on greater importance. Therefore, identifying Vitis species with improved drought tolerance and incorporating them into breeding programs could contribute to more resilient rootstocks under water limiting conditions. Furthermore, those species serve as a valuable resource to increase genetic variability of rootstocks. We hypothesize that species native to drier habitats will exhibit superior physiological performance under drought stress.

Soil incorporation of new superabsorbent hydrogels to improve vine tolerance to summer stress: physiological validation and vineyard applications

Hydrogels are soil-conditioning materials capable of absorbing substantial amounts of water relative to their weight.

Taking advantages of innovative chemometric tools to unveil vineyard ecosystem dynamics: look across volatile secondary metabolites

Sustainable viticulture and winemaking continue to represent huge challenges, where a better knowledge about the functional role of biodiversity in the vineyard ecosystems is required.