Terroir 2012 banner
IVES 9 IVES Conference Series 9 Aromatic stability of Syrah and Petit Verdot tropical wines from Brazil

Aromatic stability of Syrah and Petit Verdot tropical wines from Brazil

Abstract

The production of fine wines in the Sub-middle of the São Francisco River Valley, Northeast of Brazil, is relatively recent, about twenty-five years ago. This region presents different characteristics, with a tropical semiarid climate, in a flat landscape. Presenting high annual average temperature, solar radiation and water in abundance for irrigation, it’s possible the scaling the grape harvests for winemaking throughout the year, allowing to obtain until two harvests per year. Several factors may affect the aromatic compounds in wines, such as viticulture practices, climatic conditions, cultivars and winemaking process. This study aimed to evaluate the aromatic stability of Syrah and Petit Verdot tropical wines elaborated in two different periods in the year. The grapes were harvested in the first and second semesters of 2009, in June and November. The wines were elaborated and then, they were bottled and analyzed in triplicate, thirty days and one year after bottling, by gas chromatography with ionization detector flame (GC-FID), to evaluate the profile and the stability of the aroma compounds. Principal component analysis was applied to discriminate between wine samples and to find the compounds responsible by the variability. The results showed that Syrah and Petit Verdot tropical wines presented different responses, for stability of higher alcohols, esters and carboxylic acids.

DOI:

Publication date: August 26, 2020

Issue: Terroir 2012

Type: Article

Authors

Ana Julia de Brito ARAÚJO (1), Regina VANDERLINDE (2), Juliane Barreto de OLIVEIRA (3), Gildeilza Gomes de OLIVEIRA (4), Aline Camarão Telles BIASOTO (5), Giuliano Elias PEREIRA (6)

(1) Federal Institute of Education Science and Technology of Pernambuco, Brazil.
(2) University of Caxias do Sul-RS, Brazil
(3) State University of Bahia, Juazeiro-BA, Brazil
(4) CNPq scholarship, Embrapa Semiarid, Petrolina, Brazil
(5) Brazilian Agricultural Research Corporation – Embrapa Tropical Semiarid
(6)Brazilian Agricultural Research Corporation – Embrapa Grape & Wine/Tropical Semiarid, P.O. Box 23, 56.302-970, Petrolina-PE, Brazil

Contact the author

Keywords

grapes, red wines, tropical climat, aroma

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Grapevine nitrogen retrieval by hyperspectral sensing at the leaf and canopy level

Grapevine nitrogen (N) monitoring is essential for efficient N management plans that optimize fruit yield and quality while reducing fertilizer costs and the risk of environmental contamination. Unlike traditional vegetative-tissue sampling methods, remote sensing technologies, including hyperspectral imaging, have the potential to allow monitoring of the N status of entire vineyards at a per-vine resolution. However, differential N partitioning, variable spectral properties, and complex canopy structures hinder the development of a robust N retrieval algorithm. The present study aimed to establish a solid understanding of vine spectroscopic response at leaf and canopy levels by evaluating the different nitrogen retrieval approaches, including the radiative transfer model.

Post-plant nematicides: too little, too late for Northern root-knot nematode management

Context and Purpose. Management of plant-parasitic nematodes in perennial cropping systems such as wines grapes is challenging.

Screening of hydroxytyrosol and tyrosine related metabolites in commercial wines by an UHPLC/MS validated method.

Hydroxytyrosol (HT) is a bioactive phenolic compound with antioxidant activity. Yeast synthetise tyrosol from tyrosine by the Ehrlich pathway which is subsequently hydroxylated to HT. The aim of the present work is to develop and validate an UHPLC–HRMS method to assess the metabolites involved in this pathway as well as to screen Spanish commercial wines for HT bioactive compound.

Two dimensions, one mission: unlocking grape composition by GC × GC

Aroma is one of the most important attributes that determine consumer’s perception of the sensory quality of wine and varietal typicity.

Towards multi-purpose valorisation of polyphenols from grape pomace: Pressurized liquid extraction coupled to purification by membrane processes

Grape by-products (including skins, seeds, stems and vine shoots) are rich in health promoting polyphenols. Their extraction from winery waste and their following purification are of special interest to produce extracts with high added value compounds. Meanwhile, the growing concern over environmental problems associated with economic constraints, require the development of environmentally sustainable extraction technologies. The extraction using semi-continuous subcritical water, as a natural solvent at high temperature and high pressure a technology is promising “green” technology that is environmentally friendly, energy efficient and improve the extraction process in plant tissues.