IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Asymmetrical flow field-flow fractionation with online multidetection is a viable tool to investigate colored red wine colloids

Asymmetrical flow field-flow fractionation with online multidetection is a viable tool to investigate colored red wine colloids


Despite its relevance for wine quality and stability, red wine colloids have not still been sufficiently investigated, an occurrence due to the lack of suitable analytical techniques to study them as they are present in wine. Recently, asymmetrical Flow Field-flow Fractionation (AF4) with online multidetection has been tested as a new analytical tool to this aim, revealing its suitability for quantification, fractionation, and characterization of wine colloids in native state [1]. With the aim to characterize red wines in relation to their colloidal composition, AF4 technique was applied to 24 monovarietal Italian wines kept in bottles for 2 years and produced without any filtration, oak contact, fining treatments, malolactic fermentation or ageing on yeast lees. AF4 analysis allowed to quantify wine colloids, and to characterize them in terms of dimensions (by MALS) and absorbance (A280 & A520 nm). MALS revealed that each wine contained several colloids’ populations of different sizes (from 10 to 130 nm), but most of them showed sizes in the range 20 – 40 nm. The comparison by AF4 analysis of the A280-absorbing species present in whole wines with that of wines containing only species larger than 5 kDa (which were considered as colloids) allowed to calculate for each wine the percentage of molecules involved in the assembly of colloidal particles. This calculation showed that in the different samples the percentage of colloids varied from 1 to 44% of the total A280 absorbing compounds, indicating the diversity of the wines. Given that the A280 signal is mostly due to phenolics and proteins, these data indicate that very different percentages of these compounds participate in the formation of particles in the 20 – 40 nm size range. This means that phenolics necessarily need to be associated with other wine components to form particles of those dimensions. This association should involve proteins and polysaccharides [1]. The A520 data indicated the presence of pigments in the colloidal fraction. These pigments are likely to be constituted of tannin-anthocyanins complexes (polymeric pigments). Therefore, given the absence of species with sizes <20 nm, an association of these colored complexes with other colloidal-forming compounds seems necessary, the obvious candidate being proteins as they are known to strongly interact with tannins. Our results suggest that the color of red wines is due, in addition to free oligomeric pigments, also to colloidal particles formed by these latter bound to proteins, and that the quantity of these particles is highly variable in wines from different origin. How the presence of proteins affects the stability and evolution of red wines’ color remains to be investigated, keeping into consideration also the contribution of wine polysaccharides, which have been previously found to be part of the red wine colloidal particles [1].


[1] Marassi, et al. Food Hydrocoll 2021;110:106204.
Acknowledgments: MIUR project PRIN n.20157RN44Y


Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article


Marangon Matteo1, Marassi Valentina2, Roda Barbara2, Zattoni Andrea2, Reschiglian Pierluigi2, Mattivi Fulvio3,4, Moio Luigi5, Parpinello Giuseppina Paola6, Piombino Paola5, Río Segade Susana7, Rolle Luca7, Slaghenaufi Davide8, Versari Andrea6, Vrhovsek Urska4, Ugliano Maurizio8 and Curioni Andrea1

1Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Italy
2Department of Chemistry “G. Ciamician”, University of Bologna, Italy
3Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Italy
4Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
5Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Napoli Federico II, Italy
6Department of Agricultural and Food Sciences, University of Bologna, Italy
7Department of Agricultural, Forest and Food Sciences, University of Torino, Italy
8Department of Biotechnology, University of Verona, Italy

Contact the author


red wine, colloids, proteins, polysaccharides, phenolics


IVAS 2022 | IVES Conference Series


Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.