Terroir 2012 banner
IVES 9 IVES Conference Series 9 High resolution climate spatial analysis of European winegrowing regions

High resolution climate spatial analysis of European winegrowing regions

Abstract

Climate strongly affects the geographical distribution of grape varieties, grapevine cultivation techniques and wine organoleptic properties. The current study aims at comparing the climatic features of European winegrowing regions. A geodatabase of 260 wine producing areas within 18 countries of the European Community was first established by means of maps collected from various sources (e.g. atlases and national wine and vine services). Within the 247 of the 260 initially delimited regions, areas actually planted with vine were identified by means of the Corine Land Cover database, for a total of 6 million of hectares. Each of the 1 km resolution pixels of the WorldClim 1950-2000 monthly climatic database located within these planted areas were used to calculate agroclimatic indices. The Huglin index, the Cool night index and the Dryness index, as described by the Multicriteria Climatic Classification system, as well as a winter freeze risk index, a spring frost risk index and a heat stress index were calculated. The use of a clustering algorithm (CLARA) with each of these 1 km resolution gridded indices resulted in the identification of six climate types: (1) sub-humid temperate, (2) sub-humid cool with very cool nights and high spring frost risk, (3) moderately dry and temperate with cool nights, (4) dry and temperate warm with temperate nights, (5) sub-humid temperate with strong frost risks, and (6) very dry and hot, with cool nights climates. Each of the 247 winegrowing regions was classified according to the type of climate that covers the largest part of its territory. Despite the clustering, the type 4 climate still exhibits a large diversity of climatic characteristics. It is located mainly within winegrowing regions located close to the Mediterranean Sea. To our knowledge the current work is the largest spatial climate analysis of winegrowing regions that have been performed so far.

DOI:

Publication date: August 26, 2020

Issue: Terroir 2012

Type: Article

Authors

Benjamin BOIS (1), Aurélie BLAIS (1), Marco MORIONDO (2), Gregory V. JONES (3)

(1) Centre de Recherches de Climatologie, UMR 6282 Biogéosciences CNRS Université de Bourgogne, 6 boulevard Gabriel, 21000 Dijon, France
(2) CNR-IBIMET via Caproni 8, 50145, FLORENCE, Italy
(3) Department of Environmental Studies, Southern Oregon University, 97520, 101A Taylor Hall, Ashland, OR, U.S.A

Contact the author

Keywords

Climate, Vitis vinifera, European viticulture, WorldClim, agroclimatic indices

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Monitoring arthropods diversity in the “Costières de Nîmes” viticulture landscape

Biodiversity loss in agrosystems is partly due to landscape simplification (field enlargement, hedgerows removal…) that led to a loss of heterogeneity of the overall landscape.

White grape must processed by UHPH as an alternative to SO2 addition: Effect on the phenolic composition in three varieties

The quantity and distribution of polyphenols in musts play a fundamental role in the white winemaking. This is because these substances are exposed to oxidation reactions, which are catalysed by the polyphenol oxidase (PPO), leading to a decrease in the quality of the wines produced. PPO is inactivated by SO2, but currently, due to the restrictions of the legislation, other methodologies are being investigated. Ultra-High Pressure Homogenization (UHPH) is a non-thermal physic technology that exerts an ultrahigh pressure pumping (>200 MPa) of a fluid through a valve in a continuous system.

Evaluation of grape and wine quality according to harvest date, in a tropical region in Northeast Brazil

The Northeast region of Brazil is characterized by a semi-arid climate, has produced tropical wines since twenty years ago. The region is located at 09º 09’ South, 40º 22’ West, 365.5 m

How can historical cultivars mitigate the effects of climate change?

IFV, INRAe and the national network “Partenaires de la Sélection Vigne” representing 37 organizations from the different wine regions, have been working increasingly closely over the last 2 decades towards the preservation of the French varietal patrimony. There are approximately 600 patrimonial varieties according to INRAe and SupAgro Montpellier experts, including ancient cultivars (400) and intravarietal crossbreeds obtained since the 19th century. In the context of a drastic reduction in such varieties from the mid 1980’s in favor of mainstream varieties, it was essential to carry out an inventory of old vines and vineyards. INRAe Vassal collection plays a key role here as it holds the largest diversity available, along with a rich bibliography and herbariums, offering us the opportunity to document and double check the identity of a cultivar, consolidating the expertise of ampelographers. The work is carried out in several stages, from verifying the existence of a variety in a small region, through to rehabilitation. During this session, the authors present the process that leads to the official registration of a variety. After this, IFV selection center takes over to initiate the process of selection and propagation. A specific focus within regions such as the Alps, Champagne and the South-West will provide details of the full procedure. Bia, Bouysselet, Chardonnay rose, Mecle and the aptly named Tardif, are some of the cultivars that have followed this procedure. Furthermore, a recent regulation established by INAO on “varieties of interest for adaptation purposes” might boost uptake by growers. Since 2006, 36 historical cultivars have been registered. Most of these have been neglected in the past due to late maturity, lack of sugar and high titratable acidity at harvest time. Such characteristics are today considered as positive qualities, not only in mitigation of the effects of climate change, but also as an opportunity for restoring diversity…

How distinctive are single vineyard Gewürztraminer musts and wines from Alto Adige (Italy) based on untargeted analysis, sensory profiling, and chemometric elaboration?

Vitis vinifera L. ‘Gewürztraminer’ is a historical grape variety of Alto Adige (Südtirol), Italy, which is widely grown in the area of Tramin an der Weinstraße, but is also grown globally. It produces highly aromatic wines that are strongly influenced by the terroir of the vineyard sites where they are grown. This study looked at musts and young wines from ‘Gewürztraminer’ grapes harvested in seven distinct vineyards near Tramin and then processed at Cantina di Termeno, minimizing winemaking protocol variability. Samples were profiled using bidimensional gas chromatography–time-of-flight mass spectrometry, liquid chromatography coupled to electrochemical detection, and near-IR spectrometry. The data were subjected to Principle Component Analysis and Hierarchical Clustering Analysis. Sensory discriminant testing was undertaken using the sorting method with a semi-trained panel, and the data were processed using Multidimensional Scaling. Seven must/wine pairs could be distinguished based on their untargeted volatilome profiles and on sensory evaluation. As expected, there were greater differences in the volatile compounds between the wines than between the musts. The wines from vineyards 4 and 5 were nonetheless quite homogenous in terms of chemical and sensory analyses, as were the wines from vineyards 1 and 3. For the phenolic profile, differences were noted between the musts and wines of vineyards 2, 3, and 4, but the musts from vineyards 5 and 7 were similar. Sensory analysis showed the wines from vineyards 6 and 7 to be distinct from the rest. These results reinforce that the composition of ‘Gewürztraminer’ musts and wines is strongly determined by vineyard site, even in a small geographic area with high variability of the terroir (soil and microclimate), and that these differences are apparent in the flavours and aromas of the finished wines. Further confirmation would require a larger sample of wines, preferably from several vintages.