Terroir 2012 banner
IVES 9 IVES Conference Series 9 High resolution climate spatial analysis of European winegrowing regions

High resolution climate spatial analysis of European winegrowing regions

Abstract

Climate strongly affects the geographical distribution of grape varieties, grapevine cultivation techniques and wine organoleptic properties. The current study aims at comparing the climatic features of European winegrowing regions. A geodatabase of 260 wine producing areas within 18 countries of the European Community was first established by means of maps collected from various sources (e.g. atlases and national wine and vine services). Within the 247 of the 260 initially delimited regions, areas actually planted with vine were identified by means of the Corine Land Cover database, for a total of 6 million of hectares. Each of the 1 km resolution pixels of the WorldClim 1950-2000 monthly climatic database located within these planted areas were used to calculate agroclimatic indices. The Huglin index, the Cool night index and the Dryness index, as described by the Multicriteria Climatic Classification system, as well as a winter freeze risk index, a spring frost risk index and a heat stress index were calculated. The use of a clustering algorithm (CLARA) with each of these 1 km resolution gridded indices resulted in the identification of six climate types: (1) sub-humid temperate, (2) sub-humid cool with very cool nights and high spring frost risk, (3) moderately dry and temperate with cool nights, (4) dry and temperate warm with temperate nights, (5) sub-humid temperate with strong frost risks, and (6) very dry and hot, with cool nights climates. Each of the 247 winegrowing regions was classified according to the type of climate that covers the largest part of its territory. Despite the clustering, the type 4 climate still exhibits a large diversity of climatic characteristics. It is located mainly within winegrowing regions located close to the Mediterranean Sea. To our knowledge the current work is the largest spatial climate analysis of winegrowing regions that have been performed so far.

DOI:

Publication date: August 26, 2020

Issue: Terroir 2012

Type: Article

Authors

Benjamin BOIS (1), Aurélie BLAIS (1), Marco MORIONDO (2), Gregory V. JONES (3)

(1) Centre de Recherches de Climatologie, UMR 6282 Biogéosciences CNRS Université de Bourgogne, 6 boulevard Gabriel, 21000 Dijon, France
(2) CNR-IBIMET via Caproni 8, 50145, FLORENCE, Italy
(3) Department of Environmental Studies, Southern Oregon University, 97520, 101A Taylor Hall, Ashland, OR, U.S.A

Contact the author

Keywords

Climate, Vitis vinifera, European viticulture, WorldClim, agroclimatic indices

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Linear sweep voltammetry to classify and characterize the antioxidant properties of tannins

In recent years, numerous studies have been carried out at the OIV on oenological tannins, both with regard to oenological properties and methods of characterization. The results of these recent studies have led to the revision of the general monograph and the drafting of four new monographs, one for each of the four chemical classes into which the tannins have been grouped: ellagitannins, gallotannins, procyanidins/prodelphinidins, profisetinidins/prorobinetinins.

Un “GIS” agronomico per l’area a DOC dei Colli Euganei

L’area a “Denominazione di Origine Controllata Colli Euganei”, riconosciuta con Dpr 13 agosto 1969, è situata a sud-ovest della Provincia di Padova (fig. 1) ed è costituita da un sis­tema collinare di nuclei vulcanici evolutosi morfologicamente.

Removal of Fumonisin B1 and B2 from red wine using polymeric substances

The Ability of PVPP (Polyvinylpolypyrrolidone), PVP-DEGMA-TAIC (copolimerization of N-vinyl-2-pyrrolidinone with ethylene glycol dimethacrylate and triallyl isocyanurate) and PAEGDMA
(poly(acrylamide-co-ethylene glycol dimethacrylate)) polymers was tested as removal agents for Fumonisin B1 (FB1) and Fumonisin B2 (FB2) from model solutions and red wine. The polymers removal capacity was checked at three different resident times (2, 8 and 24 hours of contact time between the polymer and the sample), showing no differences in the percentage of FB1 and FB2 removal. Then, different polymer concentrations (1, 5 and 10 mg mL-1) were tested in model solution with and without phenolics (i.e. gallic acid and 4-methylcatechol).

Effect of ageing with Specific Inactivated Dry Yeasts on the volatile composition of Sauvignon Blanc and Carménère wines

Úbeda-Aguilera, C a, b, Peña-Neira, A.b Del Barrio-Galán, R.b, c a Biomedical Sciences Institute, Science Faculty, Universidad Autónoma de Chile, Chile. b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile c Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las Condes, Santiago, Chile The wine is a complex matrix made up of several compounds which can interact among themselves throughout the wine ageing process, thereby modifying their sensorial characteristics. It is well known that during ageing of wines on lees, polysaccharides (mainly mannoproteins) can be released and can interact with the aromatic fraction modifying its volatility.

Modelisation of the microclimatical parameters for the viticultural ”terroirs”characterization of “Canton de Vaud” (Switzerland)

Dans le cadre d’une recherche sur les terroirs viticoles du canton de Vaud – Suisse, un modèle du microclimat intégrant température, relief, éclairement et pluviométrie a été conçu.