Terroir 2012 banner
IVES 9 IVES Conference Series 9 High resolution climate spatial analysis of European winegrowing regions

High resolution climate spatial analysis of European winegrowing regions

Abstract

Climate strongly affects the geographical distribution of grape varieties, grapevine cultivation techniques and wine organoleptic properties. The current study aims at comparing the climatic features of European winegrowing regions. A geodatabase of 260 wine producing areas within 18 countries of the European Community was first established by means of maps collected from various sources (e.g. atlases and national wine and vine services). Within the 247 of the 260 initially delimited regions, areas actually planted with vine were identified by means of the Corine Land Cover database, for a total of 6 million of hectares. Each of the 1 km resolution pixels of the WorldClim 1950-2000 monthly climatic database located within these planted areas were used to calculate agroclimatic indices. The Huglin index, the Cool night index and the Dryness index, as described by the Multicriteria Climatic Classification system, as well as a winter freeze risk index, a spring frost risk index and a heat stress index were calculated. The use of a clustering algorithm (CLARA) with each of these 1 km resolution gridded indices resulted in the identification of six climate types: (1) sub-humid temperate, (2) sub-humid cool with very cool nights and high spring frost risk, (3) moderately dry and temperate with cool nights, (4) dry and temperate warm with temperate nights, (5) sub-humid temperate with strong frost risks, and (6) very dry and hot, with cool nights climates. Each of the 247 winegrowing regions was classified according to the type of climate that covers the largest part of its territory. Despite the clustering, the type 4 climate still exhibits a large diversity of climatic characteristics. It is located mainly within winegrowing regions located close to the Mediterranean Sea. To our knowledge the current work is the largest spatial climate analysis of winegrowing regions that have been performed so far.

DOI:

Publication date: August 26, 2020

Issue: Terroir 2012

Type: Article

Authors

Benjamin BOIS (1), Aurélie BLAIS (1), Marco MORIONDO (2), Gregory V. JONES (3)

(1) Centre de Recherches de Climatologie, UMR 6282 Biogéosciences CNRS Université de Bourgogne, 6 boulevard Gabriel, 21000 Dijon, France
(2) CNR-IBIMET via Caproni 8, 50145, FLORENCE, Italy
(3) Department of Environmental Studies, Southern Oregon University, 97520, 101A Taylor Hall, Ashland, OR, U.S.A

Contact the author

Keywords

Climate, Vitis vinifera, European viticulture, WorldClim, agroclimatic indices

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Botrytis cinerea, a fungal pathogen commonly known as grey mold, which under specific climatic conditions can develop into a desirable form known as noble rot. In this process the fungus penetrates the grape skin, allowing water evaporation and concentration of sugars and flavors, while profoundly affects the metabolite composition of grapes, leading to the production of unique and desirable compounds in the resulting wines. The result is a unique and complex wine with a luscious sweetness, heightened aromatics, and a distinct character.

Dialing in remote measurements of grapevine water stress by incorporating whole plant physiological responses

Context and purpose of the study. Current remote sensing strategies rely heavily on reflectance data and energy balance modelling using thermal imagery to estimate crop water use and stress.

Meso-scale future climate modeling (5 km resolution): application over French wine regions under the SRES A2 scenario (2041-2050)

In order to assess climate change at regional scales suitable to viticulture, the outputs of ARPEGE_Climat global model (resolution 0.5°) were downscaled using the Regional Atmospheric

Data fusion approaches for sensory and multimodal chemistry data applied to storage conditions

The need to combine multimodal data for complex samples is due to the different information captured in each of the techniques (modes).

The taste of color: how grape anthocyanin fractions affect in-mouth perceptions

Anthocyanins are responsible for the red wine color and their ability to condense with tannins is considered as a contributor in astringency reduction. However, recent studies showed the possibility of anthocyanins to influence directly the in-mouth perception of wines.