Terroir 2012 banner
IVES 9 IVES Conference Series 9 High resolution climate spatial analysis of European winegrowing regions

High resolution climate spatial analysis of European winegrowing regions

Abstract

Climate strongly affects the geographical distribution of grape varieties, grapevine cultivation techniques and wine organoleptic properties. The current study aims at comparing the climatic features of European winegrowing regions. A geodatabase of 260 wine producing areas within 18 countries of the European Community was first established by means of maps collected from various sources (e.g. atlases and national wine and vine services). Within the 247 of the 260 initially delimited regions, areas actually planted with vine were identified by means of the Corine Land Cover database, for a total of 6 million of hectares. Each of the 1 km resolution pixels of the WorldClim 1950-2000 monthly climatic database located within these planted areas were used to calculate agroclimatic indices. The Huglin index, the Cool night index and the Dryness index, as described by the Multicriteria Climatic Classification system, as well as a winter freeze risk index, a spring frost risk index and a heat stress index were calculated. The use of a clustering algorithm (CLARA) with each of these 1 km resolution gridded indices resulted in the identification of six climate types: (1) sub-humid temperate, (2) sub-humid cool with very cool nights and high spring frost risk, (3) moderately dry and temperate with cool nights, (4) dry and temperate warm with temperate nights, (5) sub-humid temperate with strong frost risks, and (6) very dry and hot, with cool nights climates. Each of the 247 winegrowing regions was classified according to the type of climate that covers the largest part of its territory. Despite the clustering, the type 4 climate still exhibits a large diversity of climatic characteristics. It is located mainly within winegrowing regions located close to the Mediterranean Sea. To our knowledge the current work is the largest spatial climate analysis of winegrowing regions that have been performed so far.

DOI:

Publication date: August 26, 2020

Issue: Terroir 2012

Type: Article

Authors

Benjamin BOIS (1), Aurélie BLAIS (1), Marco MORIONDO (2), Gregory V. JONES (3)

(1) Centre de Recherches de Climatologie, UMR 6282 Biogéosciences CNRS Université de Bourgogne, 6 boulevard Gabriel, 21000 Dijon, France
(2) CNR-IBIMET via Caproni 8, 50145, FLORENCE, Italy
(3) Department of Environmental Studies, Southern Oregon University, 97520, 101A Taylor Hall, Ashland, OR, U.S.A

Contact the author

Keywords

Climate, Vitis vinifera, European viticulture, WorldClim, agroclimatic indices

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Effect of nanofiltration on the chemical composition and wine quality

In Enology the conventional processes of filtration for clarification and stabilization are giving place to alternative membrane processes, including nanofiltration (NF). Furthermore, the increased alcohol content in wines recorded in recent years became an important issue for all the main wine producing countries. Among techniques available to the wine industry to reduce the ethanol content, NF is certainly one of the newest. This study is focused on the evaluation of NF influence on wine physical-chemical composition, including mineral content, which in accordance to our best knowledge is a novelty.

Fertilization Lysimeters provide new insights into the needs and impacts of N nutrition on table grape performance and fruit yield and quality

Table grape production requires adequate nitrogen (N) supply to sustain vine performance and obtain high yields. However, excess agricultural N fertilization is a major source of groundwater contamination and air pollution. Therefore, there is a strong need for empirically based precision N fertilization schemes in vineyards, for optimizing grape yield and quality while minimizing their environmental impact.
Our aim was to unequivocally quantify table grape N requirements, elucidate the drivers of daily N uptake, and quantify the relationship between fertigation N levels and vine growth, fruit yield, composition, and quality. For this, forty ‘Early Sweet’ (early-maturing, white) and ‘Crimson seedless’ (late-maturing, red) vines were grown in 500L drainage-lysimeters for 2 fruiting seasons, while subjected to five continuous N fertigation treatments ranging from 10 to 200 ppm.

Isolated Antarctic soil yeasts with fermentative capacity with potential use in the wine industry

The wine industry is currently on the search for new aromas and less browning in their products. In the improvement process of wine, lower fermentation temperatures have been considered, however, the yeasts in the market cannot tolerate such temperatures

Impact of climate on berry weight dynamics of a wide range of Vitis vinifera cultivars 

In order to study the impact of climate change on Bordeaux grape varieties and to assess the behavior of candidate grape varieties potentially better adapted to the new climatic conditions, an experimental vineyard composed of 52 grape varieties was planted in 2009 at the INRAE Bordeaux Aquitaine center[1]. Among the many parameters studied since 2012, berry weight for each variety was measured weekly from mid-veraison to maturity, with four independent replicates. The kinetics obtained allowed to study berry growth, a key parameter in grape composition and yield.

Ochratoxin a degradation by Botrytis cinerea laccase: effect of oenological factors and redox mediators

This study evaluates the effect of different oenological factors and natural mediators on the degradation of Ochratoxin A (OTA) using Botrytis cinerea laccase.