Terroir 2012 banner
IVES 9 IVES Conference Series 9 High resolution climate spatial analysis of European winegrowing regions

High resolution climate spatial analysis of European winegrowing regions

Abstract

Climate strongly affects the geographical distribution of grape varieties, grapevine cultivation techniques and wine organoleptic properties. The current study aims at comparing the climatic features of European winegrowing regions. A geodatabase of 260 wine producing areas within 18 countries of the European Community was first established by means of maps collected from various sources (e.g. atlases and national wine and vine services). Within the 247 of the 260 initially delimited regions, areas actually planted with vine were identified by means of the Corine Land Cover database, for a total of 6 million of hectares. Each of the 1 km resolution pixels of the WorldClim 1950-2000 monthly climatic database located within these planted areas were used to calculate agroclimatic indices. The Huglin index, the Cool night index and the Dryness index, as described by the Multicriteria Climatic Classification system, as well as a winter freeze risk index, a spring frost risk index and a heat stress index were calculated. The use of a clustering algorithm (CLARA) with each of these 1 km resolution gridded indices resulted in the identification of six climate types: (1) sub-humid temperate, (2) sub-humid cool with very cool nights and high spring frost risk, (3) moderately dry and temperate with cool nights, (4) dry and temperate warm with temperate nights, (5) sub-humid temperate with strong frost risks, and (6) very dry and hot, with cool nights climates. Each of the 247 winegrowing regions was classified according to the type of climate that covers the largest part of its territory. Despite the clustering, the type 4 climate still exhibits a large diversity of climatic characteristics. It is located mainly within winegrowing regions located close to the Mediterranean Sea. To our knowledge the current work is the largest spatial climate analysis of winegrowing regions that have been performed so far.

DOI:

Publication date: August 26, 2020

Issue: Terroir 2012

Type: Article

Authors

Benjamin BOIS (1), Aurélie BLAIS (1), Marco MORIONDO (2), Gregory V. JONES (3)

(1) Centre de Recherches de Climatologie, UMR 6282 Biogéosciences CNRS Université de Bourgogne, 6 boulevard Gabriel, 21000 Dijon, France
(2) CNR-IBIMET via Caproni 8, 50145, FLORENCE, Italy
(3) Department of Environmental Studies, Southern Oregon University, 97520, 101A Taylor Hall, Ashland, OR, U.S.A

Contact the author

Keywords

Climate, Vitis vinifera, European viticulture, WorldClim, agroclimatic indices

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Brettanomyces bruxellensis and off-odours: genetic and proteomic approaches to unravel the molecular mechanism of ethyl-phenols production

Brettanomyces/Dekkera yeasts in wine are able to produce various spoilage compounds that are, at high concentration, detrimental to wine quality. The principal spoiler compounds associated with Brettanomyces spp. are vinyl and ethyl-phenols that are responsible for off- odours described as “animal”, “medicinal”, “sweaty leather”, “barnyard”, “spicy” and “clove-like”.

The interaction between wine polyphenolic classes and poly-L-proline is impacted by oxygen

Oxygen plays a key role in the evolution of wine chemistry, within the non-volatile matrix. Polyphenol composition and structure, as well as the process of tannin polymerisation are directly impacted by oxidation, and this can occur during both fermentation and ageing.

Overcoming habit formation in the production of wine

Evidence indicates that climate change affects the environment, human health, and well-being via drought, increasing greenhouse effect, and climatic catastrophes. As the wine sector is also negatively affected by climate change, the role of climate change mitigation and adaptation policies is important in wine production. One example of an adaptation policy is the implementation of grapevine genetics (duchene, 2016), while organic farming may be used as an approach to mitigate the consequences of climate change (vinci et al., 2022). To this end, the european commission’s objective is to reach the european green deal target of at least 25% of the european union’s agricultural land under organic farming by 2030.

Streamlining rootstock selection: new indices for efficiency and stability in viticulture

Grapevine rootstocks play a pivotal role in influencing scion vigor, yield, and fruit quality, making their selection critical for sustainable vineyard management.

Use of ultrasounds to accelerate aging on lees of red wines

Aging on lees (AOL) is a powerful technique to protect varietal aroma and color. Simultaneously, helps to soften tannins and increase and improve wine body and structure. AOL is complementary to barrel aging modulating the wood impact and protecting wine from oxidative conditions.