Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapegrowing climates 9 The complex response of Mediterranean viticultural systems to climate change: a case study from France and Australia

The complex response of Mediterranean viticultural systems to climate change: a case study from France and Australia

Abstract

Climate change could put at risk viticultural areas situated at the hotter margins of Vitis vinifera growth climatic range. We focus on two such regions with a Mediterranean climate (CSb type in Köppen classification): Côtes-du-Roussillon in southern France and McLaren Vale in South Australia. They share a relatively similar recent climate evolution. Based on data from two synoptic weather stations, Perpignan (France) and Adelaide (Australia), with daily time series running from 1956 to 2010, we identified changes in temperatures and precipitation patterns, especially an increase of maximum temperatures, of the Huglin Index and Cool Night Index. According to climate models (data from DRIAS project in France, CSIRO Mk3.5 model in Australia) this tendency is likely to continue in the future. In these two regions, two red varieties are mainly grown: Grenache and Shiraz, as they are relatively well suited to Mediterranean climate and to market demand in volatile global markets. Based on twenty in-depth semi-structured interviews in both regions, we identified that vineyard management practices –current and planned for a near future, are based in their vast majority on economical considerations. Concerns of producers include: maintaining income and market position by producing optimal yields, a constant wine style and quality and a diversified offer. In addition, producers feel they have to deal with an increasing uncertainty regarding climate variability, confirmed by climate data. Adaptation strategies of producers to various types of changes, including climate change, take into account a multiplicity of factors, in which climate change is often not the main concern. Two opposite systems of legislation and cultural traditions in the two regions also make the choice and implementation of adaptation strategies very different. Thus the sensitivity of viticultural systems to climate change depends strongly on non-climatic factors.

DOI:

Publication date: August 27, 2020

Issue: Terroir 2012

Type: Article

Authors

Anne-Laure LEREBOULLET (1), Gérard BELTRANDO (1), Douglas K. BARDSLEY (2), Éric ROUVELLAC (3)

(1) UMR Prodig, Univ. Diderot-Sorbonne Paris Cité, UFR GHSS (site Montréal, c.c. 7001), 5 rue Thomas Mann, 75205 Paris Cedex 13, France
(2) Dept. Geography, Environment and Population, Univ. Adelaide, North Terrace Campus, SA 5005 Adelaide, Australia 3 UMR CNRS 6042 GEOLAB, Univ. Limoges, 39 rue Camille Guerin, 87036 Limoges Cedex, France

Contact the author

Keywords

Mediterranean climate, climate change, vulnerability, adaptation

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes.

Climate, Viticulture, and Wine … my how things have changed!

The planet is warmer than at any time in our recorded past and increasing greenhouse emissions and persistence in the climate system means that continued warming is highly likely. Climate change has already altered the basic framework of growing grapes for wine production worldwide and will likely continue to do so for years to come. The wine sector can continue to play an important role in leading the agricultural sector in addressing climate change. From developing on…

Modeling the suitability of Pinot Noir in Oregon’s Willamette Valley in a changing climate

Air temperature is the key driver of grapevine phenology and a significant environmental factor impacting yield and quality for a winegrape growing region. In this study the optimal downscaled CMIP5 ensemble for computing thegrowing season average temperature (GST) viticulture climate classification index was determined to spatially compute on a decadal basis predictions of the GST climate index and the grapevine sugar ripeness (GSR) model for Pinot Noir throughout the Willamette Valley (WV) American Viticultural Area (AVA). Forecasts for average temperature and a 220 g/L target sugar concentration level were computed using daily Localized Constructed Analogs (LOCA) downscaled CMIP5 historic and Representative Concentration Pathways (RCP) future climate projections of minimum and maximum daily temperature. We explore spatiotemporal trends of the GST climate classification index and Pinot Noir specific applications of the GSR phenology model for the WV AVA. Spatiotemporal computations of the GST climate index and Pinot Noir specific applications of the GSR model enable the opportunity to explore relationships between their computed values with one intent being to provide updated GST ranges that better align with current temperature-based modeling understanding of Pinot Noir grapevine phenology and the viticultural application of LOCA CMIP5 climate projections for the WV AVA. The Pinot Noir specific applications of the GSR model or the GST index with updated bounds indicate that the percent of the WV AVA area suitable for Pinot Noir production is currently at or near its peak value in the upper 80s to lower 90s of this century.

Focus on terroir studies in the eger wine region of Hungary

In 2001, the Hungarian Ministry of Agriculture and Rural Development designated the Institute of Geodesy, Cartography and Remote Sensing (FÖMI) to elaborate a Geographic Information System (GIS) supported Vineyard Register (VINGIS) in Hungary. The basis of this work was a qualification methodology (vineyard and wine cellar cadastre system) dating back to several decades, however, in the 1980s and 1990s the available geographical maps and information technology did not provide enough accuracy for an overall evaluation of viticultural areas. The reason for the VINGIS elaboration and development was an obligation resulting from the EU membership to ensure the agricultural subsidies for the wine–viticulture sector.

Étude de la cinétique de transfert du 2,4,6-trichloroanisole (TCA) entre des bouchons en liège naturel et le vin – premiers résultats

The last step in winemaking is packaging the wines for market placement, while preserving the quality attained during vinification. Since the 1980s, 2,4,6-trichloroanisole (TCA) has been recognised as an incidental and random contaminant of cork, with its migration into wine thought to contribute to ‘cork taint’. This molecule is not a cork component and little is known about how it is formed on trees. Its formation from the chlorine used to wash the cork stoppers, long suspected, has been excluded by the abandonment of chlorine washing.