Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapegrowing climates 9 The complex response of Mediterranean viticultural systems to climate change: a case study from France and Australia

The complex response of Mediterranean viticultural systems to climate change: a case study from France and Australia

Abstract

Climate change could put at risk viticultural areas situated at the hotter margins of Vitis vinifera growth climatic range. We focus on two such regions with a Mediterranean climate (CSb type in Köppen classification): Côtes-du-Roussillon in southern France and McLaren Vale in South Australia. They share a relatively similar recent climate evolution. Based on data from two synoptic weather stations, Perpignan (France) and Adelaide (Australia), with daily time series running from 1956 to 2010, we identified changes in temperatures and precipitation patterns, especially an increase of maximum temperatures, of the Huglin Index and Cool Night Index. According to climate models (data from DRIAS project in France, CSIRO Mk3.5 model in Australia) this tendency is likely to continue in the future. In these two regions, two red varieties are mainly grown: Grenache and Shiraz, as they are relatively well suited to Mediterranean climate and to market demand in volatile global markets. Based on twenty in-depth semi-structured interviews in both regions, we identified that vineyard management practices –current and planned for a near future, are based in their vast majority on economical considerations. Concerns of producers include: maintaining income and market position by producing optimal yields, a constant wine style and quality and a diversified offer. In addition, producers feel they have to deal with an increasing uncertainty regarding climate variability, confirmed by climate data. Adaptation strategies of producers to various types of changes, including climate change, take into account a multiplicity of factors, in which climate change is often not the main concern. Two opposite systems of legislation and cultural traditions in the two regions also make the choice and implementation of adaptation strategies very different. Thus the sensitivity of viticultural systems to climate change depends strongly on non-climatic factors.

DOI:

Publication date: August 27, 2020

Issue: Terroir 2012

Type: Article

Authors

Anne-Laure LEREBOULLET (1), Gérard BELTRANDO (1), Douglas K. BARDSLEY (2), Éric ROUVELLAC (3)

(1) UMR Prodig, Univ. Diderot-Sorbonne Paris Cité, UFR GHSS (site Montréal, c.c. 7001), 5 rue Thomas Mann, 75205 Paris Cedex 13, France
(2) Dept. Geography, Environment and Population, Univ. Adelaide, North Terrace Campus, SA 5005 Adelaide, Australia 3 UMR CNRS 6042 GEOLAB, Univ. Limoges, 39 rue Camille Guerin, 87036 Limoges Cedex, France

Contact the author

Keywords

Mediterranean climate, climate change, vulnerability, adaptation

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Mapping grape composition in the field using VIS/SWIR hyperspectral cameras mounted on a UTV

Assessing grape composition is critical in vineyard management. It is required to decide the harvest date and to optimize cultural practices toward the achievement of production goals. The grape composition is variable in time and space, as it is affected by the ripening process and depends on soil and climate conditions.

Cultures des vignobles en forte pente: possibilités de mécanisation. Effet de l’exposition et de l’orientation des rangs

Plus de la moitié du vignoble suisse (14’000 ha) est situé sur des coteaux en forte pente (> 30%). Dans certains vignobles, la pente naturelle du terrain a été réduite par la construction de terrasses soutenues par des murs.

Effect of drought on grapevine wood fungal pathogen communities using a metatranscriptomics approach

Crops are facing increasing biotic and abiotic stress pressures due to global changes. However, trade-off mechanisms between these stresses and the underlying physiological processes are still poorly understood, especially in perennial crop species. To better understand these trade-offs, we studied the effect of drought on grapevine (Vitis vinifera) physiology and esca-related wood fungal communities. Esca is a vascular disease caused by a community of wood-infecting pathogenic fungi, and characterized by trunk necrosis, leaf scorch symptoms, yield losses, and mortality.

Exploring diversity of grapevine responses to Flavescence dorée infection

Flavescence dorée, a serious threat to grapevine cultivation in several European Countries, is caused by phytoplasmas in the 16Sr-V ribosomal group, classified as quarantine organisms in the EU and transmitted mainly by the insect vector Scaphoideus titanus. The disease is controlled only by indirect and preventive measures, with important economic and environmental concerns. Genetic resources from the great variety of Vitis vinifera germplasm together with application of new genomic techniques could be applied to produce resistant/tolerant plants, once the genetic bases of susceptibility are elucidated. In a current Italian project (BIORES*) we are evaluating different international and local grapevine cvs. as well as microvine plants for their response to FD transmission and multiplication in controlled conditions.

Antioxidant activity of yeast peptides released during fermentation and autolysis in model conditions

Aging wine on lees benefits different wine sensory and technological properties including an enhanced resistance to oxidation. Several molecules released by yeast, such as membrane sterols and glutathione, have been previously proposed as key factors for this activity [1].