Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapegrowing climates 9 The complex response of Mediterranean viticultural systems to climate change: a case study from France and Australia

The complex response of Mediterranean viticultural systems to climate change: a case study from France and Australia

Abstract

Climate change could put at risk viticultural areas situated at the hotter margins of Vitis vinifera growth climatic range. We focus on two such regions with a Mediterranean climate (CSb type in Köppen classification): Côtes-du-Roussillon in southern France and McLaren Vale in South Australia. They share a relatively similar recent climate evolution. Based on data from two synoptic weather stations, Perpignan (France) and Adelaide (Australia), with daily time series running from 1956 to 2010, we identified changes in temperatures and precipitation patterns, especially an increase of maximum temperatures, of the Huglin Index and Cool Night Index. According to climate models (data from DRIAS project in France, CSIRO Mk3.5 model in Australia) this tendency is likely to continue in the future. In these two regions, two red varieties are mainly grown: Grenache and Shiraz, as they are relatively well suited to Mediterranean climate and to market demand in volatile global markets. Based on twenty in-depth semi-structured interviews in both regions, we identified that vineyard management practices –current and planned for a near future, are based in their vast majority on economical considerations. Concerns of producers include: maintaining income and market position by producing optimal yields, a constant wine style and quality and a diversified offer. In addition, producers feel they have to deal with an increasing uncertainty regarding climate variability, confirmed by climate data. Adaptation strategies of producers to various types of changes, including climate change, take into account a multiplicity of factors, in which climate change is often not the main concern. Two opposite systems of legislation and cultural traditions in the two regions also make the choice and implementation of adaptation strategies very different. Thus the sensitivity of viticultural systems to climate change depends strongly on non-climatic factors.

DOI:

Publication date: August 27, 2020

Issue: Terroir 2012

Type: Article

Authors

Anne-Laure LEREBOULLET (1), Gérard BELTRANDO (1), Douglas K. BARDSLEY (2), Éric ROUVELLAC (3)

(1) UMR Prodig, Univ. Diderot-Sorbonne Paris Cité, UFR GHSS (site Montréal, c.c. 7001), 5 rue Thomas Mann, 75205 Paris Cedex 13, France
(2) Dept. Geography, Environment and Population, Univ. Adelaide, North Terrace Campus, SA 5005 Adelaide, Australia 3 UMR CNRS 6042 GEOLAB, Univ. Limoges, 39 rue Camille Guerin, 87036 Limoges Cedex, France

Contact the author

Keywords

Mediterranean climate, climate change, vulnerability, adaptation

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Novel protocols for variable rate vineyard management

The advent of precision viticulture (PV) has allowed to address problems related to spatial and temporal variability at the within-field scale. Nowadays, several remote and proximal sensing solutions allow description of the existing variability at different temporal and ground resolution through extremely robust soil, vigor, yield, and grape quality maps. In parallel, numerous studies have described grapevine performances within the homogeneous zones and identified soil as main driver of variability. There is a broad consensus that different vigor zones within the same plot may show differential canopy growth, yield and fruit composition, depicting diverse enological potentials and cultural needs.

Cluster trait prediction using hyperspectral signatures in a population of 221 Riesling clones

Cluster architecture in grapevine plays a critical role in influencing bunch microclimate, thus quality traits, including sugar content, phenolic composition, and disease susceptibility.

An overview of wine sensory characterization: from classical descriptive analysis to the emergence of novel profiling techniques

The wine industry requires coexistence between tradition and innovation to meet consumers’ preferences. Sensory science allows the objective quantification of consumers’ understanding of a product and subjective feedback of consumer’s perception through acceptance or rejection of stimulus or even describing emotions evoked [1]. To measure sensations, emotions and liking, and their dynamics over time, time-intensity methods are crucial tools with growing interest in sensory science [2].

Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

In addition to aroma compounds also protein composition strongly influences the quality of wines. Proteins of wine derive mainly from the plant Vitis vinifera and may be influenced by abiotic stress as well as fermentation conditions or fining. Additionally, fungal infections can affect the protein content as well by introducing fungal proteins or affecting grape protein composition. An infection of the vine with the plant pathogenic fungus Botrytis (B.) cinerea was shown to cause a degradation of proteins in the resulting wine. Moreover, it influences the foaming properties in sparkling wine.

Producer organisations at the service of the favourable chain of values to winegrowers and winemakers: the example of France

French law and European Union law recognise the existence of interprofessional organisations that bring together all the links in the wine industry.