Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapegrowing climates 9 ECA&D: A high-resolution dataset for monitoring climate change and effects on viticulture in Europe

ECA&D: A high-resolution dataset for monitoring climate change and effects on viticulture in Europe

Abstract

Climate change will lead to persistent changes in temperature and precipitation patterns which will affect the characteristics of wine produced in each region. The European Climate Assessment and Dataset (ECA&D) is a web-based database and tool to monitor climate variability and trends over Europe. This tool is used in this study to analyse the viticulture-specific Huglin Index and averaged temperature over the growing season.

The study quantifies the timing and the extent of the expansion of the regions in Europe
where two selected grapes can be used for viticulture. For the two grape varieties analysed, the expansion is northward and eastward and areas in southern Europe are indicated where climate is becoming too hot to produce high-quality wines.

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Gerard VAN DER SCHRIER (1) , Gerhard HORSTINK (2), Else J.M. VAN DEN BESSELAAR (1), Albert M. G. KLEIN TANK (1)

(1) Royal Netherlands Meteorological Institute (KNMI) De Bilt, the Netherlands
(2) OINOS Wijncursussen, Nijverheidsstraat 28, Hoogerheide, the Netherlands

Contact the author

Keywords

Europe, climate change, Huglin Index, growing season averaged temperature.

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Evaluation of vineyards, fruit and wine affected by wild fire smoke

Wineries may randomly reject fruit from vineyards near wild fires exposed to smoke. It is difficult to determine if fruit has been compromised in quality when exposed to smoke

Berry shrivel causes – summarizing current hypotheses

Diverse ripening disorders affect grapevine resulting in high economic losses worldwide. The common obvious symptom is shriveling berries, however the shriveling pattern and the consequences for berry quality traits are distinct in each disorder. Among them, the disorder berry shrivel is characterized by a reduced sugar accumulation short after the onset of berry ripening leaving the clusters unsuitable for wine processing. Although our knowledge on BS increased recently, potential internal or external triggers contributing to the induction of BS are yet to be explored.

Ethanol reduces grapevine water consumption by limiting transpiration

Studies suggest that ethanol (EtOH), triggers plant adaptation to various stresses at low concentrations (10 µM to 10 mM).

Modeling sugar accumulation dynamics of a wide variety of grape cultivars (Vitis vinifera L.)

Climate change is a major challenge in wine production. The IPCC (2014) projected that by the end of the 21st century average temperatures will increase by 1-3.7°C. Consequently, harvest dates could advance by approximately 30 days. A general observed trend is the increase in berry sugar content and decrease in organic acids, posing challenges for winegrowers. Variability among cultivars is a precious resource to adapt viticulture to a changing environment.

Preplant fumigation only temporarily reduces Northern root-knot nematode

Management of plant-parasitic nematodes is typically focused on preplant fumigation, especially in a vineyard replant scenario. While the data are clear that this practice reduces nematodes immediately after application, which is useful in annually-cropped systems, does it have staying power in perennial cropping systems? The northern root-knot nematode Meloidogyne hapla reduces the overall lifespan and productivity of vineyards, but it does so over a long time period (slow, chronic decline). In two different commercial own-rooted V. vinifera vineyards, both undergoing vineyard replanting, we explored whether preplant fumigation reduced M. hapla densities in soils immediately after application. At one of these locations, we have explored the long-term effect of fumigation by monitoring the site for seven years post fumigation.