Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapegrowing soils 9 Contribution of soil for tipifiyng wines in four geographical indications at Serra Gaúcha, Brazil

Contribution of soil for tipifiyng wines in four geographical indications at Serra Gaúcha, Brazil

Abstract

Brazil has a recent history on geographical indications and product regulation for high quality wines. The first geographic indication implemented was the Vale dos Vinhedos Indication of Procedence (IP), within the wine production zone named Serra Gaúcha, northeast of State Rio Grande do Sul. During the last decade, the Vale dos Vinhedos ascended to the category of Denomination of Origin (DO) and three new IPs were delimited in the same region: Pinto Bandeira, Altos Montes and Monte Belo. It is known that production of high quality wines depends on the interaction of environmental factors and human activities. At local scale, soil plays important role since several factors affecting grape and wine quality are related to soil properties. The objective of this study was to evaluate potential contributions of soil to differentiate between wines produced in each of the four geographic indications at Serra Gaúcha.

Material used included a digitized soil map in scale 1:50.000 of Serra Gaúcha and digital georeferenced boundaries of the geographic indications. Spatial analysis was done on ArcGIS software. A total of 23 soil mapping units were found. Results showed that both the DO Vale dos Vinhedos (15 mapping units) and IP Pinto Bandeira (13 mapping units) have a relative predominance of Inceptisols, with low natural fertility and low organic matter content. The IP Monte Belo (9 mapping units) presents near 50% of Ultisols, with low natural fertility and medium to high levels of organic matter. In the IP Altos Montes (11 mapping units) most soils are Inceptisols with low natural fertility and low organic matter content, as well as Oxisols with low natural fertility and medium level of organic matter. Due to the observed spatial variability, soil information can help to tipify and differentiate wines produced in each of the four geographical indications at Serra Gaúcha.

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Eliana Casco SARMENTO (1), Carlos Alberto FLORES (2), Eliseu WEBER (3), Heinrich HASENACK (3), Reinaldo Oscar PÖTTER (4), Elvio GIASSON (1)

(1) Universidade Federal do Rio Grande do Sul, Faculdade de Agronomia, PPG em Ciência do Solo, Av. Bento Gonçalves, 7712, Caixa Postal 15.100, CEP 91540-000, Porto Alegre/RS, Brasil.
(2) Embrapa Clima Temperado, BR. 392, km 78, CP. 403, CEP 96010-971, Pelotas/RS, Brasil.
(3) Universidade Federal do Rio Grande do Sul, Centro de Ecologia, Av. Bento Gonçalves, 9500, CP. 15007, CEP 91501-970, Porto Alegre/RS, Brasil.
(4) Embrapa Florestas, Estrada da Ribeira, km 11, CP. 319, CEP 83411-000, Colombo/PR, Brasil.

Contact the author

Keywords

Soil, terroir, GIS.

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Come proteggere un territorio viticolo: il punto di vista del giurista

La valanga di fango che si è abbattuta nel Salemitano e nell’Avellinese, provocando decine di vittime, è stata causata in larga misura dalle insufficienti opere idrauliche e dalla manca­ta manutenzione di antiquati canali idrici.

Influence of pre-harvest elicitors treatment during ripening period on phenolic composition in Monastrell grapes

Phenolic compounds are very importants in crop plants, which is why there have been the subject of a large number of studies

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine.

«Nektar» -the new red variety wine grape aromatic high quality

The multi-annual study of the International Genetic Bank of the Grape Vine has shown that red varieties are enough, but the red varieties that produce high-quality red wine are minimal.

Bioprotective non-Saccharomyces yeast as an alternative to sulfites for the winemaking process

Sulfur dioxide (SO2) is used in winemaking due of its antioxidant, antioxydasic and antiseptic properties. Excessive amount of SO2 can negatively impact wine sensory perception and be detrimental for health. Agri-food industries are more transparent towards consumers concerning addition of sulfites, and oenology is no exception in this clairvoyance. As a consequence, the increase of consumers preference for wine with low or absent of sulfites addition is notorious. In this context, the impact of low/zero sulfites winemaking process on the microbial community should be evaluated. Moreover, microbial agents corresponding to bioprotective cultures represent a growing interest as an alternative to sulfites preservation in the early stages of vinification. However, scientific studies conducted to demonstrate their real effect are almost rare.