Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapegrowing soils 9 Contribution of soil for tipifiyng wines in four geographical indications at Serra Gaúcha, Brazil

Contribution of soil for tipifiyng wines in four geographical indications at Serra Gaúcha, Brazil

Abstract

Brazil has a recent history on geographical indications and product regulation for high quality wines. The first geographic indication implemented was the Vale dos Vinhedos Indication of Procedence (IP), within the wine production zone named Serra Gaúcha, northeast of State Rio Grande do Sul. During the last decade, the Vale dos Vinhedos ascended to the category of Denomination of Origin (DO) and three new IPs were delimited in the same region: Pinto Bandeira, Altos Montes and Monte Belo. It is known that production of high quality wines depends on the interaction of environmental factors and human activities. At local scale, soil plays important role since several factors affecting grape and wine quality are related to soil properties. The objective of this study was to evaluate potential contributions of soil to differentiate between wines produced in each of the four geographic indications at Serra Gaúcha.

Material used included a digitized soil map in scale 1:50.000 of Serra Gaúcha and digital georeferenced boundaries of the geographic indications. Spatial analysis was done on ArcGIS software. A total of 23 soil mapping units were found. Results showed that both the DO Vale dos Vinhedos (15 mapping units) and IP Pinto Bandeira (13 mapping units) have a relative predominance of Inceptisols, with low natural fertility and low organic matter content. The IP Monte Belo (9 mapping units) presents near 50% of Ultisols, with low natural fertility and medium to high levels of organic matter. In the IP Altos Montes (11 mapping units) most soils are Inceptisols with low natural fertility and low organic matter content, as well as Oxisols with low natural fertility and medium level of organic matter. Due to the observed spatial variability, soil information can help to tipify and differentiate wines produced in each of the four geographical indications at Serra Gaúcha.

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Eliana Casco SARMENTO (1), Carlos Alberto FLORES (2), Eliseu WEBER (3), Heinrich HASENACK (3), Reinaldo Oscar PÖTTER (4), Elvio GIASSON (1)

(1) Universidade Federal do Rio Grande do Sul, Faculdade de Agronomia, PPG em Ciência do Solo, Av. Bento Gonçalves, 7712, Caixa Postal 15.100, CEP 91540-000, Porto Alegre/RS, Brasil.
(2) Embrapa Clima Temperado, BR. 392, km 78, CP. 403, CEP 96010-971, Pelotas/RS, Brasil.
(3) Universidade Federal do Rio Grande do Sul, Centro de Ecologia, Av. Bento Gonçalves, 9500, CP. 15007, CEP 91501-970, Porto Alegre/RS, Brasil.
(4) Embrapa Florestas, Estrada da Ribeira, km 11, CP. 319, CEP 83411-000, Colombo/PR, Brasil.

Contact the author

Keywords

Soil, terroir, GIS.

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Effects of a new vacuum evaporation method on chemical and sensory properties of must and wine

A new process for vacuum evaporation was developed where evaporation takes place near the inner surface of a vortex produced by a rotor submerged in the liquid. Contrary to the state of the art the Vortex rotor process does not need a vacuum vessel but the rotating liquid creates a geometrically stable low pressure void surrounded by a vortex stabilized by the equilibrium between centrifugal forces and the pressure difference. First tests with water and sugar solutions at concentrations similar to grape must were conducted to verify the theoretical predictions, test the performance under different conditions and study the effect of various process parameters (Rösti et al 2015).

Investigations into the effects of a commercial organic fertilizer and of quality compost on the soil and the vines

The influences of quality compost A+ and of a commercial organic fertilizer based on dry mash from bioethanol production, blackstrap molasses, vinasse, PNC (potato nitrogen concentrate) and CSL (corn steep liquor) on the humus content, on the mineral nitrogen content in the soil, in the must and in the vine leaves, on pruning wood

Exploring the impact of NPR3 gene silencing on the interaction between grapevine and mycorrhizal fungi through genome editing

One of the main plant defence mechanisms is the Systemic Acquired Resistance (SAR) mediated by Salicylic Acid (SA). This is a heightened and broad-spectrum immune response initiated by the exposure to pathogens, inducing resistance not only in the infected site, but also throughout the entire plant. It was demonstrated that plant immune system can be regulated by two classes of SA receptors: NONEXPRESSOR OF PR GENES 1 (NPR1) and NPR1-LIKE PROTEIN 3 and 4 (NPR3/NPR4). While NPR1 is required for SA-induction followed by the expression of pathogenesis-related (PR) protein and resistance against pathogens, NPR3/NPR4 serve as transcriptional co-repressors of SA-responsive genes.

Isohydric and anisohydric behavior of 18 wine grape varieties grown in an arid climate

The interest in understanding the water balance of terrestrial plants under drought has led to the creation of the isohydric/anisohydric terminology. The classification was related to an implication-driven framework, where isohydric plants maintain a constant and high leaf water potential through an early and intense closure of their stomata, hence risking carbon starvation. In contrast, anisohydric plants drop their leaf water potential to low values as soil drought is establishing due to insensitive stomata and thus risk mortality through hydraulic failure, albeit maximizing carbon intake. When applied to grapevines, this framework has been elusive, yielding discrepancies in the classification of different wine grape varieties around the world.

Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Ultraviolet radiation (UVR) is a minor part of the solar spectrum, but it represents an important ecological factor that influences many biological processes related to plant growth and development. In recent years, the application of UVR in agriculture and food production is emerging as a clean and environmentally friendly technology.
In grapevine, many studies have been conducted on the effects of ambient levels of UVR, but there are few considering the effects of UV-B application on grape phenolic composition under commercial growing or postharvest conditions.