Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapevines and Terroirs 9 Varieties and rootstocks: an important mean for adaptation to terroir

Varieties and rootstocks: an important mean for adaptation to terroir

Abstract

A large genetic diversity exists among V. vinifera varieties, but also among cultivated rootstocks. This diversity is important to adapt plant material to different environmental conditions and contributes to the expression of terroir. Plasticity, i.e. the level of modification of the expression of individual characteristics of a genotype in different environments, is also important for adaptation. The most important physiological parameters which contribute to this adaptation are briefly reviewed. For varieties, phenology, drought responses and ripening processes are crucial. For rootstocks, variability in nutrients and water uptake, as well as their effects on whole plant development is important. A better description and understanding of the genetic variability and plasticity for these traits is highly required in order to improve the adaptation of the plant material to the current growth conditions. It will also help to develop strategies in order to respond to the ongoing climate change.

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Nathalie OLLAT, Louis BORDENAVE

UMR EGFV, INRA, ISVV, 210 chemin de Leysotte, 33140 Villenave d’Ornon, France

Contact the author

Keywords

grapevine, genetic diversity, phenology, ripening, drought responses

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

La zonazione in due zone viticole dell’emilia Romagna

Entre 1988 et 1995, dans la région Emilia-Romagna, deux zonages viticoles ont été complétés en zones assez differentes, soit géographiquement, soit par les conditions pedo-climatiques, soit par l’encépagement.

POTENTIAL OF PEPTIDASES FOR AVOIDING PROTEIN HAZES IN MUST AND WINE

Haze formation in wine during transportation and storage is an important issue for winemakers, since turbid wines are unacceptable for sale. Such haze often results from aggregation of unstable grape proteinaceous colloids. To date, foreseeably unstable wines need to be treated with bentonite to remove these, while excessive quantities, which are often required, affect the wine volume and quality (Cosme et al. 2020). One solution to avoid these drawbacks might be the use of peptidases. Marangon et al. (2012) reported that Aspergillopepsins I and II were able to hydrolyse the respective haze-relevant proteins in combination with a flash pasteurisation. In 2021, the OIV approved this enzymatic treatment for wine stabilisation (OIV-OENO 541A and 541B).

The inhibition of hydrogen sulfide and methanethiol accumulation in wine by Cu(II): The influence of temperature on the duration of protection

Hydrogen sulfide and methanethiol are recognised as two of the most significant contributors to reductive off-flavours in wine.

PHOTO OXIDATION OF LUGANA WINES: INFLUENCE OF YEASTS AND RESIDUAL NITROGEN ON VSCS PROFILE

Lugana wines are made from Turbiana grapes. In recent times, many white and rosé wines are bottled and stored in flint glass bottles because of commercial appeal. However, this practice could worsen the aroma profile of the wine, especially as regards the development of volatile sulfur compounds (VSCs). This study aims to investigate the consequences of exposure to light in flint bottles on VSCs profile of Lugana wines fermented with two different yeasts and with different post-fermentation residual nitrogen.

The role of phytoplasma effector interaction with phosphoglucomutase in the pathogenicity of ‘Candidatus Phytoplasma solani’ in grapevine 

Bois noir is the most widespread phytoplasma grapevine disease in Europe. It is associated with ‘Candidatus Phytoplasma solani’. In symptomatic grapevines cv. ‘Zweigelt’ infected with ‘Ca. P. solani’ compared with uninfected grapevines, metabolic pathways associated with phosphorylated sugar production were induced both at the transcriptional level and at the level of activity of the corresponding enzymes (Dermastia et al., 2021, Int. J. Mol. Sci. 22: 3531). In particular, the expression of gene coding for phosphoglucoisomerase was upregulated, resulting in increased phosphoglucoisomerase enzyme activity.