Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapevines and Terroirs 9 Varieties and rootstocks: an important mean for adaptation to terroir

Varieties and rootstocks: an important mean for adaptation to terroir

Abstract

A large genetic diversity exists among V. vinifera varieties, but also among cultivated rootstocks. This diversity is important to adapt plant material to different environmental conditions and contributes to the expression of terroir. Plasticity, i.e. the level of modification of the expression of individual characteristics of a genotype in different environments, is also important for adaptation. The most important physiological parameters which contribute to this adaptation are briefly reviewed. For varieties, phenology, drought responses and ripening processes are crucial. For rootstocks, variability in nutrients and water uptake, as well as their effects on whole plant development is important. A better description and understanding of the genetic variability and plasticity for these traits is highly required in order to improve the adaptation of the plant material to the current growth conditions. It will also help to develop strategies in order to respond to the ongoing climate change.

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Nathalie OLLAT, Louis BORDENAVE

UMR EGFV, INRA, ISVV, 210 chemin de Leysotte, 33140 Villenave d’Ornon, France

Contact the author

Keywords

grapevine, genetic diversity, phenology, ripening, drought responses

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Recherche de relations entre terroir et caractéristiques sensorielles des eaux-de-vie de Cognac

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

A GIS Analysis of New Zealand Terroir

This paper summarises a national survey of the geological setting of vineyards in New Zealand. We also provide an overview of climate, slope, aspect and varietals planted in New Zealand vineyards as a whole and for some individual regions.

REDWINE project: use of Chlorella vulgaris to prevent biotic and abiotic stress in Palmela’s region, Portugal, vineyards

The new EU Green Deal aims to achieve GHG emissions reduction by at least 55% by 2030 and a climate neutral EU economy by 2050.
REDWine concept will be realized through the establishment of an integrated Living Lab demonstrating the viability of the system at TRL 7. The Living Lab will be able to utilize 2 ton of fermentation off-gas/year (90% of total CO2 produced in the fermenter) and 80 m3 of liquid effluent (100% of the liquid effluent generated during fermenter washing) to produce 1 ton (dry weight) of Chlorella biomass/year. This biomass will be processed under a downstream extraction process to obtain added-value extracts and applied in food, cosmetic and agricultural end-products and to generate a new EcoWine. REDWine will focus on the recovery of off-gas from a 20.000L fermenter of red wine production existing in Adega Cooperativa de Palmela (ACP, located in Palmela, Portugal).

Linking soil C cycling and microbial diversity under regenerative management in Northern California (USA) vineyards

Regenerative agriculture (RA) practices aim to minimize soil disturbance, keep soil covered, maintain living roots underground, and integrate livestock to improve soil health and sustainability.

Influence of soil characteristics on vine growth, plant nutrient levels and juice properties: a multi-year analysis

Soil physical and chemical properties affect vine nutrition, as indicated by leaf and petiole nutrient content, in a way that may directly impact wine properties.