Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapevines and Terroirs 9 Varieties and rootstocks: an important mean for adaptation to terroir

Varieties and rootstocks: an important mean for adaptation to terroir

Abstract

A large genetic diversity exists among V. vinifera varieties, but also among cultivated rootstocks. This diversity is important to adapt plant material to different environmental conditions and contributes to the expression of terroir. Plasticity, i.e. the level of modification of the expression of individual characteristics of a genotype in different environments, is also important for adaptation. The most important physiological parameters which contribute to this adaptation are briefly reviewed. For varieties, phenology, drought responses and ripening processes are crucial. For rootstocks, variability in nutrients and water uptake, as well as their effects on whole plant development is important. A better description and understanding of the genetic variability and plasticity for these traits is highly required in order to improve the adaptation of the plant material to the current growth conditions. It will also help to develop strategies in order to respond to the ongoing climate change.

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Nathalie OLLAT, Louis BORDENAVE

UMR EGFV, INRA, ISVV, 210 chemin de Leysotte, 33140 Villenave d’Ornon, France

Contact the author

Keywords

grapevine, genetic diversity, phenology, ripening, drought responses

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Ecophysiological characterisation of terroir effects on Vitis vinifera L. Chardonnay and pinot noir in south african cool climate regions

Terroir encompasses environmental (climate, geology, soil and topography), genetic (cultivar and clone) and human factors (oenological and viticultural practices). Climate change brings about shifts in the suitability of a region for the growth of specific grapevine cultivars. This study focused on climatic and fruit parameters (berry size, weight, pH, total acidity (TA) and phenolics) to characterise the terroir effect in Vitis vinifera L. cultivars Chardonnay and Pinot Noir vineyards in the Cape South Coast region (Walker Bay and Elgin).

Effect of rootstock and preplant fumigation on plant parasitic nematode development in Washington wine grapes

In Washington State, the majority of winegrape (Vitis vinifera) vineyards are planted to their own roots. This practice is possible due to the lack of established phylloxera populations, and is preferred due to the ease of retraining after damaging winter cold events. However, own-rooted V. vinifera is generally susceptible to most plant parasitic nematodes that attack grape. In Washington State, management of nematodes is dominated by preplant soil fumigation. One practice that may mitigate economic loss due to nematodes is the adoption of nematode-“resistant” rootstocks.

El viñedo en Lanzarote y el Archipiélago Canario

La isla de Lanzarote, primera en ser ocupada en los albores del siglo XV, es la única del archipiélago, junto con Fuerteventura, que no produjo vino. Ocasionalmente hubo algún parral para el consumo

2-YEARS STUDY ON COMPARISON BETWEEN THE VOLATILE CHEMICAL PROFILE OF TWO DIFFERENT BLENDS FOR THE ENHANCEMENT OF “VALPOLICELLA SUPERIORE”

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.From 2019 Valpolicella product regulation has changed the grape proportion of the blend allowing new composition parameters of wines. For this reason, studying the volatile chemical profiles to support wine makers in the effort to produce high quality wines represents a field of great interest.

Integrating RO concentrate in viticultural irrigation for sustainable urban water reclamation

Grapevines (Vitis vinifera L.) require precise irrigation to maintain yield and quality, and the increasing use of reclaimed desalinated water for irrigation raises concerns about the accumulation of reverse osmosis concentrate (ROC), a high-salinity byproduct with no sustainable disposal solution.