Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapevines and Terroirs 9 Varieties and rootstocks: an important mean for adaptation to terroir

Varieties and rootstocks: an important mean for adaptation to terroir

Abstract

A large genetic diversity exists among V. vinifera varieties, but also among cultivated rootstocks. This diversity is important to adapt plant material to different environmental conditions and contributes to the expression of terroir. Plasticity, i.e. the level of modification of the expression of individual characteristics of a genotype in different environments, is also important for adaptation. The most important physiological parameters which contribute to this adaptation are briefly reviewed. For varieties, phenology, drought responses and ripening processes are crucial. For rootstocks, variability in nutrients and water uptake, as well as their effects on whole plant development is important. A better description and understanding of the genetic variability and plasticity for these traits is highly required in order to improve the adaptation of the plant material to the current growth conditions. It will also help to develop strategies in order to respond to the ongoing climate change.

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Nathalie OLLAT, Louis BORDENAVE

UMR EGFV, INRA, ISVV, 210 chemin de Leysotte, 33140 Villenave d’Ornon, France

Contact the author

Keywords

grapevine, genetic diversity, phenology, ripening, drought responses

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Changes in phenolic maturity and texture characteristics of the grape berry under pre-, and post-veraison water deficit

Kékfrankos (Vitis vinifera L.) grapevines grafted on Teleki-Kober 5BB rootstock were submitted to water deficit under greenhouse conditions.

Limiting magnesium availability: a novel approach to managing brettanomyces spoilage in winemaking

Brettanomyces is a world-renowned yeast that negatively impacts the chemical composition of wines through the production of metabolites that negatively impact the sensory properties of the final product. Its resilience in wine conditions and ability to produce off-flavors make it a challenge for winemakers. Currently, the primary control technique involves adding sulfur dioxide (SO2); however, some Brettanomyces strains are developing resistance to this preservative agent. [1] Therefore, new management strategies are necessary to control this spoilage yeast.

Fingerprinting the origin of rosé wines with a new high throughput polyphenomics method

Wine is a widely consumed alcoholic beverage with a high commercial value. More specifically, the worldwide consumption of rosé wine has increased by 20% since 2002[1]. But because of its high commercial value, it can become a subject of fraud, and authenticity control is necessarily required. More than one hundred polyphenols have been recently quantified in various rosé wines [2]. They are key components defining color, taste and quality of wines. Their amount and composition depend on many different factors such as grape variety, winemaking and age of the wine. In this study, the influence of geographic origin of some rosé French wines was investigated. An original and very fast UPLC-QTOF-MS method was developed and used to predict the geographic origin authenticity of rosé wines.

Influence of social interaction levels on panel effectiveness in developing wine sensory profiles using consensus method

The development of sensory profiles is crucial for quality control and innovation in the wine industry. If quantitative descriptive analysis is the most commonly used method for establishing sensory profiles due to its robustness, it presents significant limitations.

Rootstock impact on foliar symptom expression of esca on Vitis vinifera cv. Cabernet-Sauvignon

Trunk diseases and esca in particular, represent a major threat to the sustainability of the vineyards. The percentages of unproductive vines in a plot could vary from 4% to over 20 % depending on local conditions and vintages.