Arsenic in soil, leaves, grapes and wines

Abstract

The presence of arsenic in food and beverages creates concern because of the toxicity of this element, classified as carcinogenic in humans. The arsenic concentration in soil, vine leaves and berries (cv. Chardonnay) and white wines was studied, considering vineyards near to an old mining area (naturally rich in As), in comparison with others from uncontaminated areas in Trentino (Italy).
All analyses were performed using an inductively coupled plasma mass-spectrometer.
In soil, the acqua regia extracted As ranged from 3.7 to 283 mg/kg, whereas bioavailable As varied from 18 to 639 mg/kg. As in washed and acid mineralised leaves and berries was between 16.3-579 mg/kg dw and between <0.1-36.8 mg/kg dw, respectively. As content in wines was always <1.4 mg/L. Pearson’s test showed significant and positive correlations between the As concentrations in soils, leaves and berries. The samples collected near the mining area showed significantly higher As concentrations.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Tomás ROMÁN VILLEGAS, Daniela BERTOLDI, Roberto LARCHER, Alessandro SANTATO, Maurizio BOTTURA, Giorgio NICOLINI

FEM-IASMA Fondazione Edmund Mach – Istituto Agrario di San Michele all’Adige, via E. Mach, 1, 38010 San Michele all’Adige, Italy

Contact the author

Keywords

arsenic, plant uptake, soil, wine, human health risk

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Deciphering grapevine trunk early molecular responses to P. minimum and P. chlamydospora in the presence of a commercial biocontrol agent (Trichoderma atroviride, Vintec®)

Esca, one of the main grapevine trunk diseases, is a complex and poorly understood disease. Phaeoacremonium minimum and Phaeomoniella chlamydospora, two of the main pathogens associated to this disease, are thought to be responsible for the first trunk infections. Little is known concerning grapevine trunk defenses during pathogen infection.

Optimizing protocol for a rapid and cost effective DNA isolation for Marker Assisted Selection pipeline

Grapevine is a plant that holds significant socioeconomic importance due to its production of grapes for fresh consumption, wines, and juices. However, climate changes and susceptibility to diseases pose a threat to the quality and yield of these products. The breeding of new genotypes that are resistant/tolerant to biotic and abiotic stresses is essential to overcome the impact of climate changes. In this regard, Marker-assisted selection (MAS), which uses DNA markers, is a crucial tool in breeding programs. The efficiency and economy of this method depend on finding rapid DNA isolation methods.

Successive surveys to define practices and decision process of winegrowers to produce “Vins de Pays Charentais” in the Cognac firewater vineyard area

Le vin est un des produits finis que l’on obtient à partir de raisins. La vigne réagit à de nombreux facteurs environnementaux et son comportement est directement influencé par les pratiques culturales

The wine: a never-ending source of H2S and methanethiol

Volatile sulfur compounds (VSCs), mainly hydrogen sulfide and methanethiol (H2S and MeSH), are the responsible for reductive off-odor in wine.

CHANGES IN CU FRACTIONS AND RIBOFLAVIN IN WHITE WINES DURING SHORT-TERM LIGHT EXPOSURE: IMPACTS OF OXYGEN AND BOTTLE COLOUR

Copper in white wine can be associated with Cu(II) organic acids (Cu fraction I), Cu(I) thiol species (Cu fraction II), and Cu sulfides (Cu fraction III). The first two fractions are associated with the repression of reductive aromas in white wine, but these fractions gradually decrease in concentration during the normal bottle aging of wine. Although exposure of white wine to fluorescent light is known to induce the accumulation of volatile sulfur compounds, causing light-struck aroma, the influence on the loss of protective Cu fractions is uncertain. Riboflavin is known to be a critical initiator of photochemical reac-tions in wine, but the rate of its decay under short-term light exposure in different coloured bottles and for wine of different oxygen concentrations is not well understood.