Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapevines and Terroirs 9 Effects of rootstock and environment on the behaviour of autochthone grapevine varieties in the Douro region

Effects of rootstock and environment on the behaviour of autochthone grapevine varieties in the Douro region

Abstract

In an experiment located at Quinta da Cavadinha, Sabrosa, Douro Region the behaviour of the varieties Touriga Nacional (TN), Tinta Barroca (TB), Touriga Franca (TF) and Tinta Roriz (TR), grafted onto the rootstocks Rupestris du Lot, R110, R99, 1103P and 196-17, was accessed over 11 years between 2001 and 2011. The main results point to a significant influence of the environmental conditions in different years, especially those providing reduced water availability and greater heat stress: 2004, 2005, and 2009. Crop yields followed the sequence TR, TF, TB>TN, with highest oenological aptitude for TN and climate adaptive capacity to the TF. In terms of the rootstocks we confirm the lower production induced by R. Lot compared with R99, whilst 196-17 offered a good compromise between yield and quality for a great amplitude of climate conditions.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Fernando ALVES (1), Miles EDELMAN (2), Jorge COSTA (1), Paulo COSTA (1), Pedro Leal da COSTA (2), Charles SYMINGTON (2)

(1) ADVID, Associação para o Desenvolvimento da Viticultura Duriense, Qta St. Maria, APT 137, 5050-106 Godim, Portugal
(2) Symington Family Estates, Quinta do Bomfim, Portugal

Contact the author

Keywords

grapevines, rootstocks, yield, quality, Douro Region

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Consequences of apical leaf removal on grapevine water status, heat damage, yield and grape ripening on Pinot n and Chardonnay

Climate change presents a significant challenge to grape growing worldwide as increased temperatures lead to wines with increased sugar and pH levels. Manipulation of the exposed leaf area is a powerful lever governing the assimilation and storage of non-structural carbohydrates in grapevines. Reducing the leaf-to-fruit ratio is now considered as a tool for adapting to hotter and dryer grape growing conditions.

Aroma characterization of aged cognac spirits: contribution of volatile terpenoid compounds

Cognac spirit aromas result from the presence of a wide variety of volatile odorous compounds associated with the modalities of distilled spirit elaboration and during aging. Indeed, these odorous compounds play an essential role in the finesse and complexity of the aged Cognac.

“Silex vitioeno module porte-greffe”: an information system to gather experimental results on grapevine rootstocks

Maintaining stable yields and quality over time is a major challenge for the wine industry. Within the context of climate change, the choice of the rootstock is an important lever for adapting to current and future climatic conditions. Within a vineyard, the choice of the rootstock depends on the environmental conditions, the scion variety and the objectives of production. Many experimental data on the performances of rootstock already exist and can guide our decision-making.

Understanding the complexity of grapevine winter physiology in the face of changing climate

The vast majority of our understanding of grapevine physiology is focused on the processes that occur during the growing season. Though not obvious, winter physiological changes are dynamic and complex, and have great influence on the survival and phenology of grapevines. In cool and cold climates, winter temperatures are a constant threat to vine survival. Additionally, as climate changes, grapevine production is moving toward more traditionally cool and cold climates, either latitudinal or altitudinal in location. Our research focuses on understanding how grapevines navigate winter physiological changes and how temperature impacts aspects of cold hardiness and dormancy. Through these studies, we have gained keen insight into the connections between winter temperature, maximum cold haridness, and budbreak phenology, that can be used to develop prediction models for viticulture in a changing climate.

Evaluation of intra-vineyard spatial and temporal variability of leaf area index using multispectral images obtained by satellite (Landsat 8, Sentinel-2) and unmanned aerial vehicle platforms

Estimation of vineyard leaf area index (LAI) is an important aspect for the winegrowers. However, tracking and monitoring are difficult tasks due to time constraints. Satellite and unmanned aerial vehicle (UAV) imaging have become a practical monitoring method for LAI. Nevertheless, for a proper LAI determination, the image’s spatial resolution is a key factor, since low-resolution images are incapable of distinguishing between adjacent vines due to the large area covered in each pixel, this leads to misinterpretation or generalisation of vineyard information.