Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapevines and Terroirs 9 Influence of the vintage, clone and rootstock on the chemical characteristics of Syrah tropical wines from Brazil

Influence of the vintage, clone and rootstock on the chemical characteristics of Syrah tropical wines from Brazil

Abstract

In the Northeast of Brazil, vines can produce twice a year, because annual average temperature is 26ºC, with high solar radiation and water availability for irrigation. Many cultivars have been tested according to their adaptation to the climate and soil, and the main variety used for red wines is Syrah. This work aimed to evaluate five clones of Syrah, grafted on two rootstocks, in two harvests of the second semester of 2009 and 2010, according to the chemical analyses of the wines.The clones evaluated were 100, 174, 300, 470 and 525, the rootstocks were Paulsen 1103 and IAC 313 (Golia x Vitis caribeae). Grapes were harvested in November 2009 and 2010 and the yield was evaluated. Climate characteristics of each harvest was determined and correlated to the results. Wines were elaborated in glass tanks of 20 L, with alcoholic fermentation at 25ºC for seven days, then wines were pressed and malolactic fermentation was carried out at 18ºC for 20 days. The following parameters were analyzed: alcohol content, dry extract, total anthocyanins, total phenolic index. High performance liquid chromatography was used to determine tartaric, malic, lactic and citric organic acids. Results showed that wines presented different concentrations of classical analyses, phenolics and organic acids according to the harvest date, rootstocks and clones. Principal component analysis was applied on data and clusters with wine samples were formed, explaining the variability, and results are discussed.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Juliane B. OLIVEIRA (1), Gildeilza G. SILVA (2), Ana J. de B. ARAÚJO (3), Luciana L. de A. LIMA (4), Elisabeth O. ONO (5), Rogério de CASTRO (6), Amândio CRUZ (6), João SANTOS (7), Giuliano E. PEREIRA (8)

(1) Master of Science Student, Uneb/Embrapa/Capes, Petrolina-PE, Brazil
(2) Embrapa Tropical Semiarid, Petrolina-PE, Brazil
(3) Federal Institute of Pernambuco, Ouricuri-PE, Brazil
(4) Federal Rural University of Pernambuco, , Recife-PE, Brazil
(5) UNESP, Botucatu-SP, Brazil
(6) Instituto Superior de Agronomia, Lisboa, Portugal
(7) ViniBrasil, Fazenda Planaltino, Lagoa Grande-PE, Brazil
(8) Embrapa Grape & WIne/Tropical Semiarid, PO Box 23, ZIp Code 56.302-970, Petrolina-PE, Brazil

Contact the author

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Différenciation mésoclimatique des terroirs alsaciens et relation avec les paramètres du milieu naturel

The influence of climatic conditions on the development of the vine and on the quality of the wines no longer needs to be demonstrated at the scale of the vineyard, by the regional climatic characteristics, determining on this scale the viticultural potentialities (Huglin, 1978; Branas, 1946; Riou et al ., 1994); but also on a local scale, at the level of the basic terroir unit (Morlat, 1989), by the landscape differentiation of the natural environment inducing climatic variability within the same vineyard, and partly explaining differences in functioning of the vine, in connection with the processes of maturation and the quality of the wine (Becker, 1977 and 1984; Morlat, 1989 and Lebon, 1993a). According to these authors, the climatic diversity in a wine region constitutes in addition to the edaphic component, an important component of characterization of the Basic Terroir Units (UTB).

Ability of lactic acid bacterial laccases to degrade biogenic amines and OTA in wine

Two of the most harmful microbial metabolites for human health that can be present in wines and either fermented or raw foods are biogenic amines (BA) and ochratoxine A (OTA). Winemakers are aware of the need to avoid their presence in wine by using different strategies, one of them is the use of enzymes. Some recombinant laccases have been characterized and revealed as potential tools to degrade these toxic compounds in wine[1], specifically biogenic amines[2].

Shift of Nitrogen Resources by biotic interaction in grapevine

Grape phylloxera (Daktulosphaira vitifoliae Fitch), a monophagous pest of the grapevine, induces nodosities on the roots through its sap-sucking activity.

Two dimensions, one mission: unlocking grape composition by GC × GC

Aroma is one of the most important attributes that determine consumer’s perception of the sensory quality of wine and varietal typicity.

Identification of arbuscular mycorrhizal fungi species preferentially associated with grapevine roots inoculated with commercial bioinoculants 

Arbuscular mycorrhizal fungi (AMF) form symbiotic associations with plant roots and can help plants acquire nutrients from the soil in exchange for photosynthetic carbon. Commercial bioinoculants containing AMF are widely available and represent a potential opportunity to reduce the dependence of grapevines on agrochemicals. However, which commercially available AMF species colonize vine roots and affect vine growth remains unknown. The aim of this study was to identify the AMF species from commercial bioinoculants that colonize grapevine roots using high-throughput sequencing, and to evaluate the performance of five commercial bioinoculants and their effects on own-rooted Cabernet sauvignon.