Terroir 2012 banner
IVES 9 IVES Conference Series 9 Viticultural practices: past, present and future

Viticultural practices: past, present and future

Abstract

Practices in viticulture have greatly evolved in the last five decades. There were three objectives: improvement in the quality of the products, reduction in the production costs through mechanization, and protection of the environment. In terms of soil management, the combination of different techniques such as soil tillage, chemical weeding and cover-cropping, allowed to reach these three objectives in most cases. Insuring an adequate nitrogen supply to the grapevine was proved to play a key role, since nitrogen deficiency could impair the wine quality. The role of integrated water supply was pointed out, since moderate water restriction was favourable for the wine quality. In terms of vine training, a special interest was given to the winter pruning, keeping in mind the respect for the sap flows and trying to limit the expansion of the wood diseases, since the entirely mechanical pruning was rather inconclusive. Thresholds of leaf/fruit ratios were established and the canopy management during the summer such as leaf removal and shoot tipping were adapted accordingly. The objective was also to minimise the risk of diseases. The control of the yield has become one of the main concerns in viticulture. Although cluster thinning before maturation used to be unimaginable, it is today a common practice in all the vineyards concerned about wine quality and vine longevity. The concept of sustainability will go on influencing the evolution of the practices in viticulture.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

François MURISIER, Vivian ZUFFEREY, Jean-Laurent SPRING

Station de recherche Agroscope Changins-Wädenswil ACW, CH-1260 Nyon

Contact the author

Keywords

soil and water management, vine management, yield, quality

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Effect of late pruning on yield and wine composition in monastrell wines

Global warming is shifting vine phenology, resulting in a decoupling of phenolic and technological berry ripening. This is altering the balance of fruit traits, which is key relevance to winegrowers

Study of the grape glycosidic aroma precursors by crossing SPE-GC/MS, SPME-GC/MS and LC/QTOF methods

Depending on the variety, grapes contain several chemical classes of aromatic compounds (i.e., terpenols, norisoprenoids, benzenoids) mainly stored as glycosides in berry skin.

Molecular characterization of wines nucleophilic potential by ultra-performance liquid chromatography high resolution mass spectrometry

The knowledge about the molecular fraction associated to white wines oxidative stability is still poorly understood.

Valorization of grapevine leaves: screening of polyphenol composition in 50 cultivars

Grapevine leaves are known to contain different polyphenols such as flavonols, catechins and stilbenes, which are known to act as main contributors for plant defense against pathogens (1). While the composition for some major cultivars has been studied, there is lack of systematic comparison about the content of these compounds in the wide ecodiversity of Vitis vinifera cv. Recent advances in Mass Spectrometry-based Metabolomics allow a wider and more sensitive description of these polyphenols, as instance of those present in leaves (2). Such information could help to better explain leaf traits regarding the development of the leaf or to the plant tolerance to a pathogen. Moreover, these compounds offer appealing applications for human health due to their antioxidant activities.

Physiological response to drought and heat stress in the leaves of table grape varieties

Increasingly pronounced climate changes, including prolonged drought periods, pose a significant challenge to the cultivation of table grape varieties.