Terroir 2012 banner
IVES 9 IVES Conference Series 9 Viticultural practices: past, present and future

Viticultural practices: past, present and future

Abstract

Practices in viticulture have greatly evolved in the last five decades. There were three objectives: improvement in the quality of the products, reduction in the production costs through mechanization, and protection of the environment. In terms of soil management, the combination of different techniques such as soil tillage, chemical weeding and cover-cropping, allowed to reach these three objectives in most cases. Insuring an adequate nitrogen supply to the grapevine was proved to play a key role, since nitrogen deficiency could impair the wine quality. The role of integrated water supply was pointed out, since moderate water restriction was favourable for the wine quality. In terms of vine training, a special interest was given to the winter pruning, keeping in mind the respect for the sap flows and trying to limit the expansion of the wood diseases, since the entirely mechanical pruning was rather inconclusive. Thresholds of leaf/fruit ratios were established and the canopy management during the summer such as leaf removal and shoot tipping were adapted accordingly. The objective was also to minimise the risk of diseases. The control of the yield has become one of the main concerns in viticulture. Although cluster thinning before maturation used to be unimaginable, it is today a common practice in all the vineyards concerned about wine quality and vine longevity. The concept of sustainability will go on influencing the evolution of the practices in viticulture.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

François MURISIER, Vivian ZUFFEREY, Jean-Laurent SPRING

Station de recherche Agroscope Changins-Wädenswil ACW, CH-1260 Nyon

Contact the author

Keywords

soil and water management, vine management, yield, quality

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Towards microbiota-based disease management: analysis of grapevine microbiota in plots with contrasted levels of downy mildew infection

Vineyards harbor a myriad of microorganisms that interact with each other and with the grapevines. Some microorganisms are plant pathogens, such as the oomycete Plasmopara viticola that causes grapevine downy mildew. Others, such as plant growth promoting bacteria and disease biocontrol agents, have a positive influence on vine health. The present study aims to (1) investigate whether vine-based culture media increase the cultivability of the grapevine microbiota, in comparison to standard culture media and (2) identify and isolate bacterial taxa naturally present in grapevine leaves and significantly more abundant in plots showing low susceptibility to downy mildew.

Ethyl esters interact with the major wine Thaumatin Like Protein VVTL1

The interactions among aromatic compounds and proteins is an important issue for the quality of foods and beverages. In wine, the loss of flavor after vinification is associated to bentonite treatment and this effect can be the result of the removal of aroma compounds which are bound wine proteins. This phenomenon was recently demonstrated for long chain fatty acids and their ethyl esters (1). Since these latter compounds are spectroscopically silent, their association with proteins is not easy to measure.

Characterization of a unique mannan from Starmerella bacillaris for protein stabilization in white wine

Yeast cell wall components are valuable biotechnological tools with applications in oenology and beyond [1], [2].

Approaches to the classification of wine aroma aging potential. Applications to the case of Valpolicella red wines

Unlike most of other foods, wine sensory quality is thought to reach a peak after an aging period. In the case of the Valpolicella red wines

Cover crops under-vine impact on grapevine performance and vineyard soil microorganisms is highly affected by edaphoclimatic conditions at a regional scale 

Soil management through cover crops can influence the cycle of nutrients, promote water infiltration, decrease erosion, and enhance the soil microbiota biodiversity, improving the grapevine performance. However, the area under the vines tends to be left bare by applying herbicides or tillage to avoid competition with the crop in semi-arid climates. Use of covers under-vine might be an alternative to these practices aiming at grapevine quality and soil health improvement. The aim of this research was to study the implications of soil management under the vines (cultivation and cover crops) on growth, yield, berry composition and soil microbial communities. A cover crop composed by a mixture of legumes was sown and compared with a control (cultivation), which includes frequent tillage to keep the soil bare, in three areas characterized by different edaphoclimatic conditions in the region of Navarra.