Terroir 2012 banner
IVES 9 IVES Conference Series 9 Vine nitrogen status and the terroir effect: a study on cv. Doral in the Vaud vineyard (Switzerland)

Vine nitrogen status and the terroir effect: a study on cv. Doral in the Vaud vineyard (Switzerland)

Abstract

A 3-year study was conducted in the Vaud vineyard (Switzerland) to evaluate the effects of « terroir » on the ecophysiology and fruit compostion of Vitis vinifera L. cv. Doral and the characteristics of the wine made therefrom. The impact of soil on the vine-fruit-wine continuum was evaluated at 13 locations in the Vaud during the 2007-2009 seasons. Except for soil, the vineyards presented almost identical climatic characteristics and used similar cultivation techniques. The aim of this chapter was to assess whether soil might be a major environmental factor explaining the terroir effect through its effect on vine nitrogen status. We monitored the nitrogen status of the vines by measuring yeast assimilable nitrogen (YAN) in the must. The soil modulated vine nitrogen status by its fertility and rooting depth. Low vine nitrogen status induced a highly-soluble solids content, low malic acid content and high pH in fruits, resulting in small berries and low vine vigour. Wines were produced in a standardised manner from each location; then, they were subjected to sensory and chemical evaluation. YAN in musts was the parameter that best explained the variation in sensory characteristics of the wine made from grapes from the different locations. Wines made from grapes with low YAN values had negative sensory characteristics such as astringency and low aroma complexity scores. Therefore, vine nitrogen status was a key parameter contributing to the terroir effect. Furthermore, this work provides evidence of how geopedology can influence vine nitrogen status, fruit composition and sensory attributes of wines.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Vivian ZUFFEREY, Jean-Sébastien REYNARD, Geneviève Clara NICOL, François MURISIER

Station de recherche Agroscope Changins-Wädenswil ACW, CH-1260 Nyon, Switzerland

Contact the author

Keywords

soil categories, rooting depth, leaf and must nitrogen status, wine characteristics

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Soil and topography effects on water status and must composition of chardonnay in burgundy & a mini meta‐analysis of the δ 13C/water potentials correlation

The measurement of carbon isotopic discrimination in grape sugars 13 at harvest (δ C) is an integrated assessment of water status during ripening.

On the losses of dissolved CO2 from laser-etched champagne glasses under standard tasting conditions

Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate, definitely impacts champagne tasting by modifying the neuro-physico-chemical mechanisms responsible for aroma release and flavor perception. Based on theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics and mass transfer equations, a global model is proposed (depending on various parameters of both the wine and the glass itself), which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses.

Influence of cell-cell contact on yeast interactions and exo-metabolome

Alcoholic fermentation is the main step for winemaking, mainly performed by the yeast Saccharomyces cerevisiae. But other wine yeasts called non-Saccharomyces may contribute to alcoholic fermentation and modulate the wine aroma complexity. The recurrent problem with the use of these non-Saccharomyces yeasts is their trend to die off prematurely during alcoholic fermentation, leading to a lack of their interesting aromatic properties searched in the desired wine. This phenomenon appears to be mainly due to interactions with S. cerevisiae. These interactions are often negatives but remain unclear because of the species and strain specific response. Among the non-Saccharomyces yeasts, Lachancea thermotolerans is a wine yeast naturally found in grape must and well known as a great L-lactic acid producer and an aromatic molecules enhancer, but its behavior during alcoholic fermentation can be completely different in co-fermentation with S. cerevisiae in function of strain used.

Vineyard management for environment valorisation

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Il monitoraggio meteorologico come strumento per la gestione della variabilità climatica in Franciacorta

Nel 2007 è stata avviata una ricerca nell’areale di produzione del Franciacorta DOCG che ha riguardato un ampio numero di vigneti di Chardonnay con riferimento ai quali sono stati acquisite