terclim by ICS banner
IVES 9 IVES Conference Series 9 OIV 9 OIV 2024 9 Orals - Safety and health 9 Gastrointestinal digestion of wine sulphites and their effects on human gut microbiota

Gastrointestinal digestion of wine sulphites and their effects on human gut microbiota

Abstract

Sulphites are by far the most widely used additive in the wine industry. In relation to health, the interaction of sulphites with the gut microbiota has not been addressed so far. Following the consumption of wine and other sulphite-containing foods, the gastrointestinal tract and the microbiome are one of the first barriers that these compounds face in the human organism. In this study, we used a previously validated gastrointestinal digestion model (SIMGI®) [1,2] to evaluate the effect of intestinal digestion of wine sulphites on the gut microbiome. Red and synthetic wines fortified with SO₂ (200 mg/L) or not fortified were subjected to gastrointestinal digestion and colonic fermentation in the SIMGI® simulator using human feces from healthy donors (n=3). During the digestion process (gastric, intestinal, and colonic phases) samples were collected for the determination of free and combined SO₂, as well as for microbial communities compositional (16S rRNA gene sequencing [2]) and functional (ammonium ion production, short chain fatty acids (SCFA) by SMPE-GCMS [1] and phenolic compounds and metabolites by LC-MS/MS [3]) analysis of the colonic microbiota. During gastrointestinal digestion, the presence of bisulphite ions did not cause relevant changes in phenolic composition, despite their binding to wine compounds observed by the presence of combined forms of SO₂. At the colonic level, SO₂ was found to modulate the microbiota by increasing bacterial groups with sulpho-reductive activities to the detriment of those that play key and/or beneficial roles in the intestinal ecosystem. However, this effect was mitigated, at least partly, in red wine, which suggested a protective action of wine components. These changes were coupled to an intense microbial metabolism characterized by the production of phenolic acids, short-chain fatty acids, and ammonium ion, SO₂ appearing to act by slowing phenolic metabolism down. In conclusion, digestion of SO₂ under physiological conditions revealed its potential to alter the composition and functionality of the human gut microbiota, although this effect is attenuated in red wines, due to its high content of bioactive compounds such as polyphenols. These results disclose an interest in evaluating the interaction mechanisms among SO₂, wine components, and the gut ecosystem.

Acknowledgements: MICIN (Project PID2019-108851RB-C21).

References:
[1] C. Cueva, A. Jiménez-Girón, I. Muñoz-González, et al. Food Res Int. 72 (2015) 149-159.
[2] A. Tamargo, C. Cueva, M. Silva, et al. Food Res Int. 155 (2022) 111010.
[3] I. Muñoz-González, A. Jiménez-Girón, P.J. Martín-Álvarez, et al. J. Agri Food Chem. 61 (2013) 9470-9479.

Digestion gastro-intestinale des sulfites du vin et leurs effets sur le microbiote intestinal humain

Les sulfites sont de loin l’additif le plus utilisé dans l’industrie du vin. En ce qui concerne la santé, l’interaction des sulfites avec le microbiote intestinal n’a pas encore été étudiée. Après la consommation de vin et d’autres aliments contenant des sulfites, le tractus gastro-intestinal et le microbiome sont l’une des premières barrières que ces composés rencontrent dans l’organisme humain. Dans cette étude, nous avons utilisé un modèle de digestion gastro-intestinale précédemment validé (SIMGI®) pour simuler le transit digestif du vin [1,2], afin d’évaluer l’effet de la digestion intestinale des sulfites du vin sur le microbiome intestinal. La digestion gastro-intestinale et la fermentation colique d’un vin rouge fortifié (200 mg/L SO₂) et non fortifié (200 mg/L SO₂) et d’un vin synthétique ont été réalisées dans SIMGI® en utilisant des fèces humaines provenant de donneurs sains. Au cours du processus de digestion (phases gastrique, intestinale et colique), des échantillons ont été prélevés pour la détermination du SO₂ libre et combiné ainsi que pour l’analyse compositionnelle (séquençage du gène de l’ARNr 16S [2]) et fonctionnelle (production d’ions ammonium, acides gras à chaîne courte (AGCC) par SMPE-GCMS [1] et composés phénoliques et métabolites par LC-MS/MS [3]) du microbiote. Au cours de la digestion gastro-intestinale, la présence d’ions bisulfites n’a pas entraîné de changements pertinents dans la composition phénolique, malgré leur liaison aux composés du vin observée en présence de formes combinées de SO₂. Au niveau du côlon, on a constaté que le SO₂ modulait le microbiote humain en augmentant les groupes bactériens ayant des activités sulforeductrices au détriment de ceux qui jouent des rôles clés et/ou bénéfiques dans l’écosystème intestinal. Cependant, cet effet est atténué dans les vins rouges, ce qui suggère une action protectrice des composants du vin. Ces changements s’accompagnent d’un métabolisme microbien intense caractérisé par la production d’acides phénoliques, d’acides gras à chaîne courte et d’ions ammonium, le SO₂ semblant agir en ralentissant le métabolisme phénolique. La digestion du SO₂ dans des conditions physiologiques a révélé son potentiel à modifier la composition et la fonctionnalité du microbiote intestinal humain, bien que cet effet soit atténué dans le vin rouge, en raison de sa teneur élevée en composés bioactifs tels que les polyphénols. Ces résultats suggèrent l’intérêt d’évaluer les mécanismes d’interaction du SO₂ avec les composants du vin et l’écosystème intestinal.

Remerciements
MICIN (Projet PID2019-108851RB-C21).

Bibliographie
[1] C. Cueva, A. Jiménez-Girón, I. Muñoz-González, et al. Food Res Int. 72 (2015) 149-159.
[2] A. Tamargo, C. Cueva, M. Silva, et al. Food Res Int. 155 (2022) 111010.
[3] I. Muñoz-González, A. Jiménez-Girón, P.J. Martín-Álvarez, et al. J. Agri Food Chem. 61 (2013) 9470-9479.

Digestión Gastrointestinal de los Sulfitos del Vino y Efectos en la Microbiota Intestinal Humana

Los sulfitos son con diferencia el aditivo más ampliamente utilizado en la industria enológica. En relación a la salud, hasta el momento no se ha abordado la interacción de los sulfitos con la microbiota intestinal. Tras el consumo del vino y otros alimentos con sulfitos, el tracto gastrointestinal y el microbioma son una de las primeras barreras con las que se encuentran estos compuestos con el organismo humano. En este estudio, hemos empleado un modelo de digestión gastrointestinal (SIMGI®) previamente validado para simular el tránsito digestivo del vino [1,2], con el objetivo de evaluar el efecto de la digestión intestinal de los sulfitos del vino sobre el microbioma intestinal. Se llevó a cabo la digestión gastrointestinal y fermentación colónica en el SIMGI® de un vino tinto y un vino sintético fortificados (200 mg/l SO₂) y sin fortificar, empleando heces humanas de donantes sanos. Durante el proceso de digestión (fases gástrica, intestinal y colónica) se recogieron muestras para la determinación del SO₂ libre y combinado, así como para el análisis composicional (secuenciación del gen ARNr 16S [2]) y funcional (producción de ión amonio, ácidos grasos de cadena corta (SCFA) por SMPE-GCMS [1] y compuestos y metabolitos fenólicos por LC-MSMS [3]) de la microbiota colónica. Durante la digestión gastrointestinal, la presencia de iones bisulfito no ocasionó cambios relevantes en la composición fenólica, a pesar de su unión a compuestos del vino observado a través de la presencia de formas combinadas del SO₂. A nivel colónico, se comprobó que el SO₂ modula la microbiota humana mediante el incremento de grupos bacterianos con actividades sulforeductoras en detrimento de los que desempeñan funciones clave y/o beneficiosas en el ecosistema intestinal. Sin embargo, este efecto se ve amortiguado en los vinos tintos, lo que sugiere una acción protectora de los componentes del vino. Estos cambios estuvieron acompañados por un intenso metabolismo microbiano caracterizado por la producción de ácidos fenólicos, ácidos grasos de cadena corta e ión amonio, observándose que el SO₂ parece actuar ralentizando del metabolismo fenólico. La digestión de SO₂ en condiciones fisiológicas reveló su potencial para alterar la composición y funcionalidad de la microbiota intestinal humana, si bien este efecto se ve atenuado en el vino tinto, debido a su elevado contenido en compuestos bioactivos como los polifenoles. Estos resultados sugieren el interés de evaluar los mecanismos de la interacción del SO₂ con los componentes del vino y el ecosistema intestinal.

Agradecimientos
MICIN (Proyecto PID2019-108851RB-C21).

Bibliografía
[1] C. Cueva, A. Jiménez-Girón, I. Muñoz-González, et al. Food Res Int. 72 (2015) 149-159
[2] A. Tamargo, C. Cueva, M. Silva, et al. Food Res Int. 155 (2022) 111010
[3] I. Muñoz-González, A. Jiménez-Girón, P. J. Martín-Álvarez, et al. J. Agri Food Chem. 61 (2013) 9470-9479

Publication date: November 18, 2024

Issue: OIV 2024

Type: Article

Authors

M. Victoria Moreno-Arribas¹, Edgards Relaño de la Guía¹, Carolina Cueva¹, Natalia Molinero¹, M. José Motilva², Begoña Bartolomé¹

¹ CSIC-CIAL, Nicolás Cabrera 9, Madrid, Spain
² CSIC-ICVV, Logroño (La Rioja), Spain

Contact the author*

Tags

IVES Conference Series | OIV | OIV 2024

Citation

Related articles…

Validation of a method for the determination of volatile compounds in in spirituous beverages using contained ethanol as a reference substance

The results of experimental studies of the method based on the usage of ethyl alcohol as an internal standard for the direct determination of volatile compounds in wines and others alcohol contained products are presented. The method was validated in terms of precision, accuracy, limits of detection and quantification (lod and loq), linearity, and robustness.

Mousy off-flavor detection: a rapid LCMS/MS method

These days, consumers are interested in food products linked to the environment and the concept of naturalness. They prefer “free” products, such as those with no pesticide residues or no added sulfur dioxide (so2) in wines. In fact, so2 is the most widely used preservative in winemaking, as it has multiple properties at low cost: it is antioxidant, antioxidasic and antimicrobial.

Biomarker-based phenotyping of grapevine (vitis spp.) resistance to plasmopara viticola reveals interactions between pyramided resistance loci

Grape downy mildew, caused by plasmopara viticola, is one of the main diseases affecting viticulture worldwide and its control usually relies on frequent sprays with agrochemicals. Grapevine varieties resistant to p. Viticola represent an effective solution to control downy mildew and reduce the environmental impact of viticulture. Loci of resistance to p. Viticola (Rpv) have been introgressed from wild vitis species and some of them, like Rpv1, Rpv3.1 and Rpv10, are currently the most utilized genetic resources in grape breeding.

Evolution of oak barrels C-glucosidic ellagitannins

During oak wood contact, wine undergoes important modifications that modulate its organoleptic quality and complexity, including its aroma, structure, astringency, bitterness and color. Vescalagin and castalagin are the two main C-glucosidic ellagitannins found in oak wood used for wine aging wood but lyxose/xylose derivatives (grandinin and roburin e) and dimeric forms (roburins a,b, c and d) are also present. The presence of several hydroxyl groups in the ortho-positions at the periphery of the structure of the ellagitannin isomers allows these molecules to undergo oxidation or condensation reactions with other compounds.

Isotopes to distinguish production system in Brazilian viticulture

Organic viticulture integrates practices aimed at foresting positive relationships among, vines, soil, and climate, with a focus on sustainability, social responsibility, and environmental protection. To safeguard production integrity, regulatory bodies worldwide conduct organic certifications in accordance with relevant regulations. Considering that agriculture practices influence the nitrogen, carbon and oxygen isotope composition, the study aimed to investigate the response of these isotopes in grape must cultivated by organic, biodynamic and conventional methods to distinguish between production systems.