Terroir 2012 banner
IVES 9 IVES Conference Series 9 Relationships between berry quality and climatic variability in grapevine cultivars from Piedmont

Relationships between berry quality and climatic variability in grapevine cultivars from Piedmont

Abstract

A major topic in viticultural research is the analysis of the relationships between climate on one side, and grape and wine quality on the other. It is well known that climatic conditions have a high impact on growth and development of grapevine and consequently on yield and quality. In particular, wine quality is correlated with bioclimatic indexes, which are based on air temperature and cumulated rainfall during the growing season.

This study was aimed at creating and analyzing a dataset containing berry quality data collected on 13 grapevine cultivars of Piedmont, and climatic and geomorphological data of the vineyards where berry samples were taken. Berry quality and meteorological data were collected from 1999 to 2010 and bioclimatic indexes were calculated over the vegetative growing period.

In a preliminary analysis, for each cultivar an ANOVA was performed, and significant differences among years as concerns total soluble solids (TSS), titratable acidity and pH were detected.

Pearson’s correlation analysis was applied separately for each cultivar, in order to perform a first evaluation of the relationships between climatic, geomorphological and berry quality data. As expected, significant relationships between berry quality and climatic data were detected. Such relationships changed from one cultivar to another. PCA was carried out to examine TSS distribution among the different areas, based on some climatic and geomorphological parameters. In particular, Huglin index, cumulated precipitation, number of thermal units, cumulated radiation, altitude, slope and aspect were chosen.

A multiple regression analysis was also performed and the regression coefficients were used to build synthesis maps, using digital layers for each cultivar, and applying basic GIS techniques.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Tiziana LA IACONA (1) , Simone FALZOI (2) , Andrea SCHUBERT (1), Federico SPANNA (2)

(1) Dipartimento Colture Arboree, University of Torino, via Leonardo da Vinci, 44. 10095 Grugliasco (TO). Italy
(2) Piedmont Region, Phytosanitary Service, Agrometeorology Sector. Via Livorno, 60. 10144, Torino. Italy

Contact the author

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Conservation of intravarietal diversity in France: exhaustive overview and perspectives

Since the renewal of the French vineyard after the Phylloxera crisis, the panorama of cultivated varieties has dramatically changed. This current genetic erosion is due to the increasing interest

Grapevine vigour is correlated with N-mineralization potential of soil from selected cool climate vineyards in Victoria, Australia

Excess vigour has been a problem on fertile soils under high rainfall in many cool climate regions of Australia. High and low vigour blocks were selected in vineyards of the cool climate regions of King Valley, Yarra Valley and Mornington Peninsula, Victoria.

A fine-scale approach to map bioclimatic indices using and comparing dynamical and geostatistical methods

Climate, especially temperature, plays a major role in grapevine development. Several bioclimaticindices have been created to relate temperature to grapevine phenology (e.g. Winkler Index, Huglin Index, Grapevine Flowering Véraison model [GFV]).

Authenticating the geographical origin of wine using fluorescence spectroscopy and machine learning

Wine is a luxury product and a global beverage steeped in history and mystery. Over time, various regions have become renowned for the quality of wines they produce, which adds considerable value to the regions and the brands. On the whole, the international wine market is worth many hundreds of billions of dollars, which attracts unscrupulous operators intent on defrauding wine consumers.

Active thermography to determine grape bud mortality: system design and feasibility

Bud death due to cold damage is a recurrent and major economic issue with Vitis vinifera L. in the Northeastern U.S. winegrowing regions. Primary buds – and sometimes secondary and tertiary buds – are often damaged by fluctuating temperatures in the winter and early spring. To maintain balanced vegetative and reproductive growth of a vine, pruning practices need to be adjusted to account for bud damage. Conventional bud damage assessment requires growers to sample canes/spurs, cut nodes with a razor blade, and then visually assess bud damage. This process is laborious and becomes a major barrier for damage-compensated pruning decision-making, leading to too few live buds per vine and the associated excessive vigor and low yield that result. The overarching goal of this study was to develop an active thermographic system for non-destructive detection of bud damage in the vineyard.