Terroir 2012 banner
IVES 9 IVES Conference Series 9 Relationships between berry quality and climatic variability in grapevine cultivars from Piedmont

Relationships between berry quality and climatic variability in grapevine cultivars from Piedmont

Abstract

A major topic in viticultural research is the analysis of the relationships between climate on one side, and grape and wine quality on the other. It is well known that climatic conditions have a high impact on growth and development of grapevine and consequently on yield and quality. In particular, wine quality is correlated with bioclimatic indexes, which are based on air temperature and cumulated rainfall during the growing season.

This study was aimed at creating and analyzing a dataset containing berry quality data collected on 13 grapevine cultivars of Piedmont, and climatic and geomorphological data of the vineyards where berry samples were taken. Berry quality and meteorological data were collected from 1999 to 2010 and bioclimatic indexes were calculated over the vegetative growing period.

In a preliminary analysis, for each cultivar an ANOVA was performed, and significant differences among years as concerns total soluble solids (TSS), titratable acidity and pH were detected.

Pearson’s correlation analysis was applied separately for each cultivar, in order to perform a first evaluation of the relationships between climatic, geomorphological and berry quality data. As expected, significant relationships between berry quality and climatic data were detected. Such relationships changed from one cultivar to another. PCA was carried out to examine TSS distribution among the different areas, based on some climatic and geomorphological parameters. In particular, Huglin index, cumulated precipitation, number of thermal units, cumulated radiation, altitude, slope and aspect were chosen.

A multiple regression analysis was also performed and the regression coefficients were used to build synthesis maps, using digital layers for each cultivar, and applying basic GIS techniques.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Tiziana LA IACONA (1) , Simone FALZOI (2) , Andrea SCHUBERT (1), Federico SPANNA (2)

(1) Dipartimento Colture Arboree, University of Torino, via Leonardo da Vinci, 44. 10095 Grugliasco (TO). Italy
(2) Piedmont Region, Phytosanitary Service, Agrometeorology Sector. Via Livorno, 60. 10144, Torino. Italy

Contact the author

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Enhancing hydric stress tolerance by editing the VviMYB60 promoter with CRISPR/Cas9 

Climate change presents increasing challenges to viticulture, particularly with rising water stress contributing significantly to yield losses and damages. The identification of the MYB60 transcription factor, which regulates stomatal opening and closing in Arabidopsis thaliana and Vitis vinifera, offers potential solutions. Notably, knockout studies in Arabidopsis have shown reduced stomatal opening and increased drought tolerance in myb60 mutants. Additionally, the grapevine ortholog, VviMYB60, can restore the wild-type phenotype of Arabidopsis myb60 mutants. Further investigation of the Arabidopsis promoter region has revealed that mutations in DOF motifs lead to reduced expression of AtMYB60.

New markers for monitoring “fresh mushroom aroma” in wine: A dual approach using microbiological and chemical tools from the vineyard to winery–A synthesis of recent research advances

The ‘fresh mushroom off-flavour’ has been recognized by the wine industry as an emerging defect since the 2000s. For many years, this off-flavour was not specifically characterized and rather grouped under ‘earthy’ and ‘musty’ taints. However, it has become increasingly problematic due to its rising prevalence. In some vineyards, incidents of this off-flavour now occur as frequently as once every five years. This trend may be associated with climatic changes affecting regions that are more prone to warm and wet seasons.

Italy sweet revolution: how club grapes are transforming the table grape market

Italy is the leader table grape producer country in Europe and the eighth worldwide (OIV, 2021). The italian production area is sized at approximately 47,248 hectares with a production of 9.66 million quintals of grapes. Apulia and sicily are the main producing italian regions which collectively account for over the 90% of the italian production area (istat, 2022).

Using elicitors in different grape varieties. Effect over their phenolic composition

Phenolic compounds are very important in crop plants and have been the subject of a large number of studies. Three main reasons can be cited for optimizing the level of phenolic compounds in crop plants: their physiological role in plants, their technological significance for food processing, and their nutritional characteristics1 Indeed, an enormous diversity of phenolic antioxidants is found in fruits and vegetables, and their presence and roles can be affected or modified by several pre- and postharvest cultural practices and/or food processing technologies (Ruiz-García et al. 2012, Goldman et al. 1999, Tudela et al. 2002). In winegrapes, the technological importance of phenolic compounds, mainly flavonoids, is well-known.

Towards a better understanding of cultivar susceptibility to esca disease: results from a pluriannual common garden monitoring

Grapevine (Vitis vinifera L.) exhibits a high level of genetic and phenotypic diversity among the approximately 6000 cultivars recorded. This perennial crop is highly vulnerable to numerous fungal diseases, including esca, which is a complex vascular pathology that poses a significant threat to the wine sector, as there is currently no cost-efficient curative method[1]. In this context, an effective approach to mitigate the impact of such diseases is by leveraging the crop’s genetic diversity. Indeed, susceptibility to esca disease appears to vary between cultivars, under artificial or natural infection. However, the mechanisms and varietal characteristics underlying cultivar susceptibility to esca are still unknown.