Terroir 2012 banner
IVES 9 IVES Conference Series 9 A general phenological model for characterising grape vine flowering and véraison

A general phenological model for characterising grape vine flowering and véraison

Abstract

The timing of phenology is critical if grape quality potential is to be optimized. Phenological process based models are used to predict phenology. In this study, three different models were tested to predict flowering and veraison of grapevine (Vitis vinifera L.) using a new extensive phenological database. The Spring Warming model was found optimal in its trade-off between parsimony (number of parameters) and efficiency. The optimal parameter combination found for this model to calculate the degree-days was 0°C for the base temperature and the 60th day of the year for the starting day of accumulation (northern hemisphere). This model was validated at the varietal level, performed better than the classic Spring Warming model with Tb of 10 °C and t0 of 1st January (northern hemisphere) and remains easy to use.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Audra K. PARKER (1,2,3,4), Inaki GARCIA DE CORTAZAR-ATAURI (5), Isabelle CHUINE (6), Rainer W. HOFMANN (2), Mike C.T. TROUGHT (1), Cornelis VAN LEEUWEN (3,4)

(1) The New Zealand Institute for Plant & Food Research Ltd. Marlborough Wine Research Centre, 85 Budge St, PO Box 845, Blenheim 7240, New Zealand.
(2) Lincoln University, P.O. Box 84, Lincoln 7647, New Zealand.
(3) Univ. Bordeaux, ISVV, Ecophysiology and functional genomics of grapevines, UMR 1287, F-33140 Villenave d’Ornon, France
(4) Bordeaux Sciences Agro, ISVV, Ecophysiology and functional genomics, UMR 1287, F-33140 Villenave d’Ornon, France
(5) INRA-Agroclim, Domaine St Paul – Site Agroparc, 84914 Avignon cedex 9, France.
(6) Centre d’Ecologie Fonctionnelle et Evolutive, Equipe Bioflux, CNRS, 1919 route de Mende, 34293 Montpellier Cedex 5, France.

Contact the author

Keywords

grapevine, modelling, phenology, veraison, flowering, temperature

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Combining high-power ultrasound and oenological enzymes during winemaking for improving red wine chromatic characteristics

he use of high-power ultrasound (US) is proving of great interest to the oenological industry due to its effects in the improvement of wine organoleptic characteristics, especially in terms of color [1, 2].

Does the location of wine cellars have significant impact on the evolution of madeira wine polyphenols?

Unlike table wines, Madeira Wine (MW,17-22% ABV) benefits from a long aging period under thermo-oxidative aging conditions, during which it gains its unique and complex flavour. A broad study is ongoing and aims to assess if the differences in the storage conditions impact significantly the evolution of MWs during canteiro aging. Considering that polyphenols have a significant role in the wine aging, we intended to appraise if there are significant differences in the evolution trends of polyphenols of MWs aging in different cellars under canteiro. Different MWs were aged into brand-new oak casks in two different wine cellars, one in Funchal (B) and other in Caniçal (Z). Temperature and humidity data were sensor recorded. RP-HPLC-DAD was used to perform the identification and quantification of polyphenols [1]. CIELab parameters were also assessed, using an UV-Vis spectrophotometer.

INSIGHT THE IMPACT OF GRAPE PRESSING ON MUST COMPOSITION

The pre-fermentative steps play a relevant role for the characteristics of white wine [1]. In particular, the grape pressing can affect the chemical composition and sensory profile and its optimized management leads to the desired extraction of aromas and their precursors, and phenols resulting in a balanced wine [2-4]. These aspects are important especially for must addressed to the sparkling wine as appropriate extraction of phenols is expected being dependent to grape composition, as well.

Effects of temperature on the aroma composition of hydrolysates from grape polyphenolic and aroma fractions (PAFs)

The aim is to assess whether fast anoxic aging hydrolysis (75ºC x 24 h) can satisfactorily predict aroma developed from grape aroma precursors at milder conditions (50ºC x 5 weeks).

The importance of soil and geology in tasting terroir; a case history from the Willamette valley, Oregon

Wines differ from each other based on seven different factors: the type of grape; the bedrock geology and resulting soils; the climate; the soil hydrology; physiography of the site; the winemaker and the vineyard management techniques. The first five of these factors make up what the French call terroir, “the taste of the place”.