Terroir 2012 banner
IVES 9 IVES Conference Series 9 A general phenological model for characterising grape vine flowering and véraison

A general phenological model for characterising grape vine flowering and véraison

Abstract

The timing of phenology is critical if grape quality potential is to be optimized. Phenological process based models are used to predict phenology. In this study, three different models were tested to predict flowering and veraison of grapevine (Vitis vinifera L.) using a new extensive phenological database. The Spring Warming model was found optimal in its trade-off between parsimony (number of parameters) and efficiency. The optimal parameter combination found for this model to calculate the degree-days was 0°C for the base temperature and the 60th day of the year for the starting day of accumulation (northern hemisphere). This model was validated at the varietal level, performed better than the classic Spring Warming model with Tb of 10 °C and t0 of 1st January (northern hemisphere) and remains easy to use.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Audra K. PARKER (1,2,3,4), Inaki GARCIA DE CORTAZAR-ATAURI (5), Isabelle CHUINE (6), Rainer W. HOFMANN (2), Mike C.T. TROUGHT (1), Cornelis VAN LEEUWEN (3,4)

(1) The New Zealand Institute for Plant & Food Research Ltd. Marlborough Wine Research Centre, 85 Budge St, PO Box 845, Blenheim 7240, New Zealand.
(2) Lincoln University, P.O. Box 84, Lincoln 7647, New Zealand.
(3) Univ. Bordeaux, ISVV, Ecophysiology and functional genomics of grapevines, UMR 1287, F-33140 Villenave d’Ornon, France
(4) Bordeaux Sciences Agro, ISVV, Ecophysiology and functional genomics, UMR 1287, F-33140 Villenave d’Ornon, France
(5) INRA-Agroclim, Domaine St Paul – Site Agroparc, 84914 Avignon cedex 9, France.
(6) Centre d’Ecologie Fonctionnelle et Evolutive, Equipe Bioflux, CNRS, 1919 route de Mende, 34293 Montpellier Cedex 5, France.

Contact the author

Keywords

grapevine, modelling, phenology, veraison, flowering, temperature

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Overhead spray water treatment as a mitigation strategy for reducing vine stress and preserving grape quality during heatwaves

Changes in climate have been influencing the quality of wine grapes worldwide. The impact of extreme climate events over short periods is increasingly recognized as a serious risk to grape quality and yield quantity. In this study the mitigation effects of a pulsed water spray on vine canopy during heatwave events has been evaluated for maintaining vine condition during the growing season and grape quality. Vines of three varieties (Malbec, Bonarda, and Syrah) under drip irrigation in the UNCuyo experimental vineyard were treated with an overhead pulsed water spray.

Which potential for Near Infrared Spectroscopy to characterize rootstock effects on grapevines?

Developing rootstocks adapted to environmental constraints constitutes a key lever for grapevine adaptation to climate change. In this context, Near Infrared Spectroscopy (NIRS) could be used as a high-throughput phenotyping technique to simplify the study of rootstocks in grafted situations. This study is an exploratory analysis to evaluate the potential of NIRS acquired on grafted tissues to reveal rootstock effects as well as the plasticity of combinations of scion/rootstock to better characterize these interactions.
Through the study of 25 combinations (5 scions times 5 rootstocks) in a dedicated experimental vineyard, we showed that NIRS obtained from grafted tissues capture rootstock and scion/rootstock interaction signals, up to 20% of the total variance at specific wavelengths.

Conservation of intravarietal diversity in France: exhaustive overview and perspectives

Since the renewal of the French vineyard after the Phylloxera crisis, the panorama of cultivated varieties has dramatically changed. This current genetic erosion is due to the increasing interest

Methodological advances in relating deep root activity to whole vine physiology

Full understanding of grapevine responses to variable soil resources requires
assessing the grapevine root system. Grapevine root systems are expansive and examining deep roots (i.e., >40 cm)
is particularly important in conditions where grapevines increase reliance on deep soil resources, such as drought
or plant competition. Traditional methods of assessing roots rely on morphological traits associated specific
functions (e.g., root color, diameter, length), while recent methodological advances allow for estimating root
function more directly (e.g., omics). Yet, the potential of applying refined methods remains underexplored for roots
at deep depths.

The moment of preharvest elicitor application influence its final effect on winegrapes quality

Phenolic compounds are secondary metabolites of grapes. Plants produce a wide variety of this type of metabolites through diverse biosynthesis pathways and their production is sometimes a response to external stimuli, either environmental or biotic stresses. Some of them may act as chemical defenses against pathogens or herbivores and their synthesis is increased when the attack exists. However, it is remarkable that the synthesis of these interesting compounds can be activated even when the stimulus is not present, with the use of elicitors. These are substances that when applied exogenously trigger the biosynthetic pathways conducting to the synthesis of these defense compounds.