Terroir 2012 banner
IVES 9 IVES Conference Series 9 A general phenological model for characterising grape vine flowering and véraison

A general phenological model for characterising grape vine flowering and véraison

Abstract

The timing of phenology is critical if grape quality potential is to be optimized. Phenological process based models are used to predict phenology. In this study, three different models were tested to predict flowering and veraison of grapevine (Vitis vinifera L.) using a new extensive phenological database. The Spring Warming model was found optimal in its trade-off between parsimony (number of parameters) and efficiency. The optimal parameter combination found for this model to calculate the degree-days was 0°C for the base temperature and the 60th day of the year for the starting day of accumulation (northern hemisphere). This model was validated at the varietal level, performed better than the classic Spring Warming model with Tb of 10 °C and t0 of 1st January (northern hemisphere) and remains easy to use.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Audra K. PARKER (1,2,3,4), Inaki GARCIA DE CORTAZAR-ATAURI (5), Isabelle CHUINE (6), Rainer W. HOFMANN (2), Mike C.T. TROUGHT (1), Cornelis VAN LEEUWEN (3,4)

(1) The New Zealand Institute for Plant & Food Research Ltd. Marlborough Wine Research Centre, 85 Budge St, PO Box 845, Blenheim 7240, New Zealand.
(2) Lincoln University, P.O. Box 84, Lincoln 7647, New Zealand.
(3) Univ. Bordeaux, ISVV, Ecophysiology and functional genomics of grapevines, UMR 1287, F-33140 Villenave d’Ornon, France
(4) Bordeaux Sciences Agro, ISVV, Ecophysiology and functional genomics, UMR 1287, F-33140 Villenave d’Ornon, France
(5) INRA-Agroclim, Domaine St Paul – Site Agroparc, 84914 Avignon cedex 9, France.
(6) Centre d’Ecologie Fonctionnelle et Evolutive, Equipe Bioflux, CNRS, 1919 route de Mende, 34293 Montpellier Cedex 5, France.

Contact the author

Keywords

grapevine, modelling, phenology, veraison, flowering, temperature

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Using δ13C and hydroscapes as a tool for discriminating cultivar specific drought response

Measurement of carbon isotope discrimination in berry juice sugars at maturity (δ13C) provides an integrated assessment of water use efficiency (WUE) during the period of berry ripening, and when collected over multiple seasons can be used as an indication of drought stress response. Berry juice δ13C measurements were carried out on 48 different varieties planted in a common garden experiment in Bordeaux, France from 2014 through 2021 and were paired with midday and predawn leaf water potential measurements on the same vines in a subset of six varieties. The aim was to discriminate a large panel of varieties based on their stomatal behaviour and potentially identify hydraulic traits characterizing drought tolerance by comparing δ13C and hydroscapes (the visualisation of plant stomatal behaviour as a response to predawn water potential). Cluster analysis found that δ13C values are likely affected by the differing phenology of each variety, resulting in berry ripening of different varieties taking place under different stress conditions within the same year. We accounted for these phenological differences and found that cluster analysis based on specific δ13C metrics created a classification of varieties that corresponds well to our current empirical understanding of their relative drought tolerances. In addition, we analysed the water potential regulation of the subset of six varieties (using the hydroscape approach) and found that it was well correlated with some δ13C metrics. Surprisingly, a variety’s water potential regulation (specifically its minimum critical leaf water potential under water deficit) was strongly correlated to δ13C values under well-watered conditions, suggesting that base WUE may have a stronger impact on drought tolerance than WUE under water deficit. These results give strong insights on the innate WUE of a very large panel of varieties and suggest that studies of drought tolerance should include traits expressed under non-limiting conditions.

Effect of late pruning on yield and wine composition in monastrell wines

Global warming is shifting vine phenology, resulting in a decoupling of phenolic and technological berry ripening. This is altering the balance of fruit traits, which is key relevance to winegrowers

Effect of simulated shipping conditions on colour and SO2 evolution in soave wines

The shelf life of food is defined as the period in which the product will remain safe, is certain to retain desired sensory, chemical, physical, and microbiological characteristics

Evaluation of Polarized Projective Mapping as a possible tool for attributing South African Chenin blanc dry wine styles

Multiple Factor Analysis (MFA) According to the Chenin blanc Association of South Africa, there are three recognized dry wine styles, Fresh and Fruity (FF), Rich and Ripe Unwooded (RRU), and Rich and Ripe Wooded (RRW), classically attributed with the help of sensory evaluation. One of the “rapid methods” has drawn our attention for the purpose of simplifying and making style attribution for large sample sets, evaluated during different sessions, more robust. Polarized Projective Mapping (PPM) is a hybrid of Projective Mapping (PM) and Polarised Sensory Positioning (PSP). It is a reference-based method in which poles
(references) are used for the evaluation of similarities and dissimilarities between samples.

Soil survey and continuous classification for terroir delineation in the “Colli Orientali del Friuli” wine production area

The combination of a non-parametric dissimilarity index with auger boring recordings was tested in a project of soil suitability evaluation for quality wine production in a 2000-ha hill slope portion of the “Colli Orientali del Friuli” AOC district (Italy).