Terroir 2012 banner
IVES 9 IVES Conference Series 9 Grapevine performances in five areas of ‘Chianti Classico’ Comportement de la vigne en cinq zones des « Chianti Classico »

Grapevine performances in five areas of ‘Chianti Classico’ Comportement de la vigne en cinq zones des « Chianti Classico »

Abstract

The research was carried out in the ‘Chianti Classico’ area and it was part of the ‘Chianti Classico 2000’ research project. The performances ‘Sangiovese’ grapevine (clone ‘SSF-A548’) grafted on ‘1103P’ and ‘420A’ rootstocks, were evaluated during a six years period, on five experimental vineyards located in the Province of Florence and Siena. The vineyards were established at a density of 3500 plants per hectare, trained to horizontal spur cordon (m 0.7 from the ground) with 30000 buds per hectare. The main meteorological data were monitored by automatic stations and soil analysis was performed at the beginning of the trials. Vines were planted in a randomized block design with four or five replication according to the vineyard size and uniformity. During six consecutive years on 30 plants from each thesis were carried out the following observations: phenology earliness (budbreak, veraison), bud fertility, bunch weight, and yield and pruning weight per plant, must characteristics of the berries at harvest. Physical and chemical analysis of wines obtained from microvinification (made in 500 L containers), were also performed. The climatic differences resulted among the zones of the ‘Chianti Classico’ examined, had a significant effect on vine phenology also in relationship with altitude, which together to soil characteristics contributed to affect the agronomic behaviour of the three varieties, the must composition and the wine characteristics. Discriminant analysis allowed distinguishing some sites, whose differences can be ascribed to the territorial influence on the vegetative and productive activity of the grapevine, berry ripening and wine composition. Hierarchical influences due to clone ‘SSF-A548’ according to the site and year are presented.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Giancarlo SCALABRELLI (1), Claudio D’ONOFRIO (1), Eleonora DUCCI (1), Mario BERTUCCIOLI (2)

(1) Dipartimento di Coltivazione e Difesa delle Specie Legnose “G. Scaramuzzi”, Sezione di sColtivazioni Arboree, Università di Pisa, Via del Borghetto, 80 56124 Pisa
(2) Dipartimento di Biotecnologie agrarie, Università di Firenze, Via Donizetti 6, 50144 Firenze

Contact the author

Keywords

Vitis vinifera, Sangiovese, yield, wine

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Influence of grapes origin and yeast strain on aroma profile of corvina and corvinone dry passito wines

Valpolicella is a wine region characterized by a wide use of the technology of grape drying for the production of two red passito wines, recognized as PDOs, “Recioto della Valpolicella” and the most famous “Amarone della Valpolicella”. Geographical origin of the grapes can influence wine composition by grape chemical composition yeast behaviour during fermentation. This study investigates the impact of different commercial yeast strains on aroma profiles of wines produced with withered grapes of different origins. In addition, the influence of spontaneous fermentation is also considered. METHODS: Experimental red wines were produced with a standard winemaking protocol with withered Corvina and Corvinone grapes obtained from two different geographical areas within the Valpolicella region. Fermentations were carried out with four different commercial yeasts plus a spontaneous fermentation. Wines were analysed by means of SPE- and SPME-GC-MS techniques and sensory analysis (sorting task).

Can early defoliation improve fruit composition of Tempranillo grapevines in the semi-arid terroir of Utiel-Requena, Spain?

Early defoliation has been found a useful tool to reduce cluster compactness and to improve fruit composition in vigorous sites of different viticultural areas. Our objective was to test the usefulness

Basic Terroir Unit (U.T.B.) and quality control label for honey; making the designations of origin (A.O.C) and« crus » more coherent

Considérant d’une part la judicieuse mise au point d’un label de qualité contrôlée des miels suisses (STÖCKLI et al. 1997), considérant d’autre part l’élaboration d’une carte des paysages végétaux (HEGG et al. 1993),

The Bergerac guaranteed vintage area « terroirs »

The vineyard of Bergerac, a guaranteed vintage, is situated in the mid-Lot valley, which has siliceous terraced rows on its hillsides, and on its bordering plateaux, composed of limestone and clay of the tertiary geological eras.

Differences in the chemical composition and “fruity” aromas of Auxerrois sparkling wines from the use of cane and beet sugar during wine production.

The main objective of this study was to establish if beet sugar produces a different concentration of “fruity” volatile aroma compounds (VOCs), compared to cane sugar when used for second alcoholic fermentation of Auxerrois sparkling wines. Auxerrois base wine from the 2020 vintage was separated into two lots; half was fermented with cane sugar and half with beet sugar (both sucrose products and tested for sugar purity). These sugars were used in yeast acclimation (IOC 2007), and base wines for the second fermentation (12 bottles each). Base wines were manually bottled at the Cool Climate Oenology and Viticulture Institute (CCOVI) research winery. The standard chemical analysis took place at intervals of 0, 4 weeks, and 8 weeks post-bottling. Acidity and pH measurements were carried out by an auto-titrator. Residual Sugar (g/L) (glucose (g/L), fructose (g/L)), YAN (mg N/L), malic acid, and acetic acid (g/L) were analyzed by Megazyme assay kits. parameters were analyzed by Megazyme assay kits. Alcohol (% v/v) was assessed by GC-FID. VOC analysis of base wines, finished sparkling wines, as well as the two sugars in model sparkling wine solutions, was carried out by GC-MS. VOCs included ethyl octanoate, ethyl hexanoate, ethyl butanoate, ethyl decanoate, ethyl-2-methylbutyrate, ethyl-3-methylbutyrate, ethyl 2-methyl propanoate, ethyl 2- hydroxy propanoate, 1-hexanol, 2-phenylethan-1-ol, ethyl acetate, hexyl acetate, isoamyl acetate and 2-phenylethyl acetate.