Terroir 2012 banner
IVES 9 IVES Conference Series 9 Grapevine performances in five areas of ‘Chianti Classico’ Comportement de la vigne en cinq zones des « Chianti Classico »

Grapevine performances in five areas of ‘Chianti Classico’ Comportement de la vigne en cinq zones des « Chianti Classico »

Abstract

The research was carried out in the ‘Chianti Classico’ area and it was part of the ‘Chianti Classico 2000’ research project. The performances ‘Sangiovese’ grapevine (clone ‘SSF-A548’) grafted on ‘1103P’ and ‘420A’ rootstocks, were evaluated during a six years period, on five experimental vineyards located in the Province of Florence and Siena. The vineyards were established at a density of 3500 plants per hectare, trained to horizontal spur cordon (m 0.7 from the ground) with 30000 buds per hectare. The main meteorological data were monitored by automatic stations and soil analysis was performed at the beginning of the trials. Vines were planted in a randomized block design with four or five replication according to the vineyard size and uniformity. During six consecutive years on 30 plants from each thesis were carried out the following observations: phenology earliness (budbreak, veraison), bud fertility, bunch weight, and yield and pruning weight per plant, must characteristics of the berries at harvest. Physical and chemical analysis of wines obtained from microvinification (made in 500 L containers), were also performed. The climatic differences resulted among the zones of the ‘Chianti Classico’ examined, had a significant effect on vine phenology also in relationship with altitude, which together to soil characteristics contributed to affect the agronomic behaviour of the three varieties, the must composition and the wine characteristics. Discriminant analysis allowed distinguishing some sites, whose differences can be ascribed to the territorial influence on the vegetative and productive activity of the grapevine, berry ripening and wine composition. Hierarchical influences due to clone ‘SSF-A548’ according to the site and year are presented.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Giancarlo SCALABRELLI (1), Claudio D’ONOFRIO (1), Eleonora DUCCI (1), Mario BERTUCCIOLI (2)

(1) Dipartimento di Coltivazione e Difesa delle Specie Legnose “G. Scaramuzzi”, Sezione di sColtivazioni Arboree, Università di Pisa, Via del Borghetto, 80 56124 Pisa
(2) Dipartimento di Biotecnologie agrarie, Università di Firenze, Via Donizetti 6, 50144 Firenze

Contact the author

Keywords

Vitis vinifera, Sangiovese, yield, wine

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Assessing the climate change vulnerability of European winegrowing regions by combining exposure, sensitivity and adaptive capacity indicators

Winegrowing regions recognized as protected designations of origin (PDOs) are closely tied to well defined geographic locations with a specific set of pedoclimatic attributes and strictly regulated by legal specifications. However, climate change is increasingly threatening these regions by changing local conditions and altering winegrowing processes. The vulnerability to these changes is largely heterogenous across different winegrowing regions because it is determined by individual characteristics of each region, including the capacity to adapt to new climatic conditions and the sensitivity to climate change, which depend not only on natural, but also socioeconomic and legal factors. Accurate vulnerability assessments therefore need to combine information about adaptive capacity and climate change sensitivity with projected exposure to new climatic conditions. However, most existing studies focus on specific impacts neglecting important interactions between the different factors that determine climate change vulnerability. Here, we present the first comprehensive vulnerability assessment of European wine PDOs that spatially combines multiple indicators of adaptive capacity and climate change sensitivity with high-resolution climate projections. We found that the climate change vulnerability of PDO areas largely depends on the complex interactions between physical and socioeconomic factors. Homogenous topographic conditions and a narrow varietal spectrum increase climate change vulnerability, while the skills and education of farmers, together with a good economic situation, decrease their vulnerability. Assessments of climate change consequences therefore need to consider multiple variables as well as their interrelations to provide a comprehensive understanding of the expected impacts of climate change on European PDOs. Our results provide the first vulnerability assessment for European winegrowing regions at high spatiotemporal resolution that includes multiple factors related to climate exposure, sensitivity, and adaptive capacity on the level of single winegrowing regions. They will therefore help to identify hot spots of climate change vulnerability among European PDOs and efficiently direct adaptation strategies.

Pruned vine biomass exclusion from a clay loam vineyard soil – examining the impact on physical/chemical properties

The wine industry worldwide faces increasing challenges to achieve sustainable levels of carbon emission mitigation. This project seeks to establish the feasibility of harvesting winter pruned vineyard biomass (PVB) for potential use in carbon footprint reduction, through its use as a renewable biofuel for energy production. In order to make this recommendation, technical issues such as the potential environmental impact, chemical composition and fuel suitability, and logistical challenges of harvesting biomass needs to be understood to compare with the results from similar studies. Of particular interest is the role PVB plays as a carbon source in vineyard soils and what effect annual removal might have on soil carbon sequestration. A preliminary trial was established in the Waite Campus vineyard (University of Adelaide) to test current management strategies. Vines are grown in a Eutrophic, Red Dermosol clay loam soil with well managed midrow swards. A comparison was undertaken of mid-row treatments in two 0.25 Ha blocks (Shiraz and Semillon), including annual cultivation for seed bed preparation, the deliberate exclusion of PVB (25 years) and incorporation of PVB (13 years) at an average of 3.4 and 5.5 Mg/Ha-1 for Shiraz and Semillon respectively. In both 0-10cm and 10-30cm soil core sample depths, combined soil carbon % measures in the desired range of 1.80 to 3.50, were not significantly different between treatments or cultivars and yielded an estimated 42 Mg/ha-1 of sequestered soil carbon. Other key physical and chemical measures were likewise not significantly different between treatments. Preliminary results suggest that in a temperate zone vineyard, managed such as the one used in this study, there is no long term negative impact on soil carbon sequestration through removing PVB. This implies that growers could confidently harvest PVB for use in several end fates including as a bio fuel.

Biomass carbon and nitrogen input from cover crops in an irrigated vineyard in Okanagan Valley, Canada

The use of cover crops in vineyards has been encouraged by positive effects on wine grape yield and sensory attributes, and improved soil function. This study examined the efficacy of three alleyway and three undervine cover crop treatments in an organic vineyard in the semiarid Okanagan Valley, Canada in 2021.

Influence of viticulture on the temporary evolution of the landscape: the case of the AO Ribera del Duero (Central Spain)

The European Landscape Convention (ELC, 2001) defined the landscape as the “part of a
territory as perceived by the population and resulting from the action of natural and/or human factors and their interrelationships”. Wine landscapes, protected or not under figures such as cultural landscapes or Cultural heritage, are a clear demonstration of this definition, denoting the interrelationships of the natural
environment and the action of the human, which modulates the territory to give the different wine
landscapes. This work was focused on the study of the effect of the human factors linked to the cultivation of the vine on the modification of the landscape.

Grape ripening delaying with combined use of leaf removal and natural shading in Manto negro (Vitis vinifera L.) under deficit irrigation

The increasing frequency of heat waves during grape ripening presents challenges for the production of high-quality wine grapes. This underscores the significance of developing effective irrigation and canopy management techniques to optimize both yield and grape quality.
A field experiment was carried out during 2021 and 2022 using Manto negro wine grapes to study the effect of two irrigation strategies and different light exposure levels on grape quality. In a four-block experimental vineyard at Bodega Ribas in Mallorca, two irrigation treatments—moderate and severe deficit irrigation—were implemented. Within each irrigation plot, three light exposure treatments were randomly assigned, encompassing exposed clusters from pea size, non-exposed clusters, and shaded clusters after softening.