Terroir 2012 banner
IVES 9 IVES Conference Series 9 Grapevine performances in five areas of ‘Chianti Classico’ Comportement de la vigne en cinq zones des « Chianti Classico »

Grapevine performances in five areas of ‘Chianti Classico’ Comportement de la vigne en cinq zones des « Chianti Classico »

Abstract

The research was carried out in the ‘Chianti Classico’ area and it was part of the ‘Chianti Classico 2000’ research project. The performances ‘Sangiovese’ grapevine (clone ‘SSF-A548’) grafted on ‘1103P’ and ‘420A’ rootstocks, were evaluated during a six years period, on five experimental vineyards located in the Province of Florence and Siena. The vineyards were established at a density of 3500 plants per hectare, trained to horizontal spur cordon (m 0.7 from the ground) with 30000 buds per hectare. The main meteorological data were monitored by automatic stations and soil analysis was performed at the beginning of the trials. Vines were planted in a randomized block design with four or five replication according to the vineyard size and uniformity. During six consecutive years on 30 plants from each thesis were carried out the following observations: phenology earliness (budbreak, veraison), bud fertility, bunch weight, and yield and pruning weight per plant, must characteristics of the berries at harvest. Physical and chemical analysis of wines obtained from microvinification (made in 500 L containers), were also performed. The climatic differences resulted among the zones of the ‘Chianti Classico’ examined, had a significant effect on vine phenology also in relationship with altitude, which together to soil characteristics contributed to affect the agronomic behaviour of the three varieties, the must composition and the wine characteristics. Discriminant analysis allowed distinguishing some sites, whose differences can be ascribed to the territorial influence on the vegetative and productive activity of the grapevine, berry ripening and wine composition. Hierarchical influences due to clone ‘SSF-A548’ according to the site and year are presented.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Giancarlo SCALABRELLI (1), Claudio D’ONOFRIO (1), Eleonora DUCCI (1), Mario BERTUCCIOLI (2)

(1) Dipartimento di Coltivazione e Difesa delle Specie Legnose “G. Scaramuzzi”, Sezione di sColtivazioni Arboree, Università di Pisa, Via del Borghetto, 80 56124 Pisa
(2) Dipartimento di Biotecnologie agrarie, Università di Firenze, Via Donizetti 6, 50144 Firenze

Contact the author

Keywords

Vitis vinifera, Sangiovese, yield, wine

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Impact of moderate water deficit on grape quality potential on Pinot Noir in Champagne (France)

Environmental factors like soil and climate influence grape quality potential. Their impact is often mediated through vine water and nitrogen status. Depending on the color of the grapes (red or white) and the type of wine produced, the desired level of vine water and nitrogen status for optimum wine quality is different. Little investigation has been carried out concerning these factors and their potential influence on sparkling wine quality on two vintages. In this study vine water and nitrogen status were assessed at a very high density and related to grape composition and berry weight. Through statistical analyses, the major factors driving grape quality potential on Pinot noir in Champagne were highlighted.

Influence of climate change conditions (elevated CO2 and temperature) on the grape composition of five tempranillo (Vitis vinifera L.) Somatic variants

The current levels of greenhouse gas emissions are expecting to provoke a change on the environmental conditions which, among others, will include a rise of global mean surface temperature and an increment of atmospheric CO2 levels (IPCC, 2014), known as climate change. The response of grapevine (Vitis vinifera L.), one of the most important crops in Europe, from both a cultural and economic point of view, is not completely understood yet and the studies considering the interaction between factors are scarce. Besides, the potential variety of responses among somatic variants needs to be studied in order to be exploited in the avoidance of undesired traits linked to climate change (Carbonell‐Bejerano et al., 2015).

Impact of long term agroecological and conventional practices on subsurface soil microbiota in Macabeu and Xarel·lo vineyards

There is a growing trend on the transition from conventional to agroecological management of vineyards. However, the impact of practices, such as reduced-tillage, organic fertilization and cover crops, is not well-understood regarding the soil microbial diversity, and its relationship with the soil physicochemical properties in the subsurface depth near the rooting zone. Soil bacterial diversity is an important contributor towards plant health, productivity and response to environmental stresses. A field experiment was conducted by sampling subsurface soil bacterial community (NGS and qPCR) near to the root zone of Macabeu and Xarel·lo vineyards, located at the Penedes. 3 organic (ECO) and 3 conventional (CON) vineyards, with more than 10 years of respective management were sampled (n=5 each plot). ECO practices did not affect bacterial and fungal abundance but increased significantly the ammonium oxidizing bacteria and alpha-diversity (Inv.Simpson). Interestingly beta-diversity was significantly affected by the management strategy. ANOSIM-tests revealed a significative effect of the management (ecological vs conventional) and plot, on the soil microbial structure (ASV abundance). Main phyla depicted were Proteobacteria, Actinobacteria and Acidobacteria, whose relative abundances were not affected by the management. EdgeR assay revealed a significant increase of Cyanobacteria and decrease of Gemmatimonadetes and Firmicutes phyla in ECO. Interestingly, the grapevine variety was not correlated with the soil microbial community structure. Mantel-test revealed an important correlation (Spearman) of some physicochemical parameters with the soil microbiota structure, in order of importance: texture, EC, pH Ca/Mg, Mg/P, K+, Mg2+, Ca2+, SO42-, and OM. N-NH4 and NTK, which were higher in the ECO managed soils, did not correlated significantly with the soil microbiome population. The results revealed the importance of combining a deep physicochemical characterization of each replicate with the microbial diversity assessment to gain better insights on the relationship between soil microbiome and vineyard management.

The impact of leaf canopy management on eco-physiology, wood chemical properties and microbial communities in root, trunk and cordon of Riesling grapevines (Vitis vinifera L.)

In the last decades, climate change required already adaptation of vineyard management. Increase in temperature and unexpected weather events cause changes in all phenological stages requiring new management tools. For example, defoliation can be a useful tool to reduce the sugar content in the berries creating differences in the wine profiles. In a ten-year field experiment using Riesling (Vitis vinifera L, planted 1986, Geisenheim, Germany), various mechanical defoliation strategies and different intensities were trialed until 2016 before the vineyard was uprooted. Wood was sampled from the plant compartments root, trunk, cordon and shoot for analyses of physicochemical properties (e.g. lignin and element content, pH, diameter), nonstructural carbohydrates and the microbial communities. The aim of the study was to investigate the influence of reduced canopy leaf area on the sink-source allocation into different compartments and potential changes of the fungal and prokaryotic wood-inhabiting community using a metabarcoding approach. Severe summer pruning (SSP) of the canopy and mechanical defoliation (MDC) above the bunch zone decreased the leaf area by 50% compared to control (C). SSP reduced the photosynthetic capacity, which resulted in an altered source-sink allocation and carbohydrate storage. With lower leaf area, less carbohydrates are allocated. This for example resulted in a decreased trunk diameter. Further, it affected the composition of the grapevine wood microbiota. SSP and MDC management changed significantly the prokaryotic community composition in wood of the root samples, but had no effect in other compartments. In general, this study found strong compartment and less management effects of the microbial community composition and associated physicochemical properties. The highest microbial diversities were identified in the wood of the trunk, and several species were recorded the first time in grapevine.

Are Farm to fork strategy goals reasonable and achievable? State of the art of Península de Setubal’s winegrowers

The European Union’s “farm to fork” strategy sets out several objectives to be achieved by farmers, who, among others, relate to increasing biodiversity, protecting soils and reducing the use of pesticides. At a time when the amendments to the national plans of Sustainable Use of pesticides are being discussed, it is important to understand what the Setúbal Peninsula region status is.