Terroir 2012 banner
IVES 9 IVES Conference Series 9 Towards a unified terroir zoning methodology in viticulture

Towards a unified terroir zoning methodology in viticulture

Abstract

In viticulture, terroir is a key concept that refers to an area and thus possesses a geographical dimension. Hence, zoning of viticultural terroir is an important issue. This paper addresses soil and climate related aspects of terroir zoning. The first step of the zoning process is a clear identification of the objectives that are being pursued. Soil zoning and climate zoning methods are presented separately, although both approaches are preferably carried out simultaneously, in order to take into account soil-climate interactions in the terroir effect. Definition of a scale adapted to the objectives is critical, particularly so in soil zoning. For soil zoning, the relevance of geology, geomorphology and pedology (soil science) is discussed. The use of new technologies (e.g. GIS or remote sensing) enables the production of more detailed maps at reduced costs. In climate zoning, climate data and agroclimatic indices must be chosen according to the zoning objectives. High quality climatic data must be selected and validated. Following, homogeneous climatic zones are indentified. Viticultural zoning has to be validated, preferably so by eco-physiological studies. This paper is based on the unified terroir zoning methodology that is currently in preparation by the experts of the International Organisation of Vine and Wine (OIV).

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Cornelis VAN LEEUWEN (1,2), Benjamin BOIS (3), Jean-Philippe ROBY (1,2), Laure de RESSEGUIER (1,2)

(1) Univ. Bordeaux, ISVV, Ecophysiology and functional genomics of grapevines, UMR 1287, F-33140 Villenave d’Ornon, France
(2) Bordeaux Sciences Agro, ISVV, Ecophysiology and functional genomics, UMR 1287, F-33140 Villenave d’Ornon, France
(3) Centre de Recherches de Climatologie / Biogéosciences, UMR 6282, CNRS – Université de Bourgogne, 6 boulevard Gabriel, 21000 Dijon, France

Contact the author

Keywords

viticulture, terroir, zoning, soil, climate

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

An internet-based gis application for vineyard site assessment in the U.S. and matching grape variety to site

Vineyard site selection and determination of adapted grape varieties for a site are the most fundamental factors contributing to vineyard success, but can be challenging to ascertain

Winemaking processes discrimination by using qNMR metabolomics

AIM: Metabolomics in food science has been increasingly used over the last twenty years. Among the tools used for wine, qNMR has emerged as a powerful tool to discern wines based on environmental factors such as geographical origin, grape variety and vintage (Gougeon et al., 2019a).

Photoselective shade films affect grapevine berry secondary metabolism and wine composition

Grapevine physiology and production are challenged by forecasted increases in temperature and water deficits. Within this scenario, photoselective overhead shade films are promising tools in warm viticulture areas to overcome climate change related factors. The aim of this study was to evaluate the vulnerability of ‘Cabernet Sauvignon’ grape berry to solar radiation overexposure and optimize shade film use for berry integrity. A randomized complete block design field study was conducted across two years (2020-2021) in Oakville, Napa Valley, CA, with four shade films (D1, D3, D4, D5) differing in the percent of radiation spectra transmitted and compared to an uncovered control (C0). Integrals for gas exchange parameters and mid-day stem water potential were unaffected by the shade films in 2020 and 2021. By harvest, berries from uncovered and shaded vines did not differ in their size or primary metabolism in either year. Despite precipitation exclusion during the dormant season in the shaded treatments, yield did not differ between them and the control in either season. In 2020, total skin anthocyanins (mg/g fresh mass) in the shaded treatments was greater than C0 during berry ripening and at harvest. Conversely, flavonol concentrations in 2020 were reduced in shaded vines compared to C0. The 2020 growing season highlighted the impact of heat degradation on flavonoids. Flavonoid concentrations in 2021 increased until harvest while flavonoid degradation was apparent from veraison to harvest in 2020 across shaded and control vines. Wine analyses highlighted the importance of light spectra to modify wine composition. Wine color intensity, tonality and anthocyanin values were enhanced in D4 whereas antioxidant properties were enhanced in C0 and D5 wines. Altogether, our results highlighted the need of new approaches in warm viticulture areas given the impact that composition of light has on berry and wine quality.

Monitoring early rooting behavior of grapevine rootstocks: a 2D-imaging approach

The plasticity of grapevines in response to diverse growing conditions is influenced, among other factors, by the extent to which the roots explore the soil and the ability to accumulate and retrieve water and nutrients.
Newly planted grapevines, in particular, face challenges due to limited resources. The young plant’s ability for a fast and intensive penetration of the soil is vital in periods of water scarcity. The selection of an appropriate, site-specific rootstock significantly impacts both, the quality of the fruit produced and the economic success of the wine estate.

Herbicide-free systems based on under-the-row grass cover in French vineyards

In a context of reducing herbicide use, the most part of French vineyards are developing permanent grass cover crops on inter-rows alleys, while under the row chemical weeding remains the general case. The setting up of a controlled grass cover crop under the vine row could be a complementary alternative to mechanical weeding – which one is very restrictive – interesting from a technical and economical point of view. The present study aimed at assessing agronomic impacts of grass cover crop under the row in different climatic conditions and production objectives.