Terroir 2012 banner
IVES 9 IVES Conference Series 9 Towards a unified terroir zoning methodology in viticulture

Towards a unified terroir zoning methodology in viticulture

Abstract

In viticulture, terroir is a key concept that refers to an area and thus possesses a geographical dimension. Hence, zoning of viticultural terroir is an important issue. This paper addresses soil and climate related aspects of terroir zoning. The first step of the zoning process is a clear identification of the objectives that are being pursued. Soil zoning and climate zoning methods are presented separately, although both approaches are preferably carried out simultaneously, in order to take into account soil-climate interactions in the terroir effect. Definition of a scale adapted to the objectives is critical, particularly so in soil zoning. For soil zoning, the relevance of geology, geomorphology and pedology (soil science) is discussed. The use of new technologies (e.g. GIS or remote sensing) enables the production of more detailed maps at reduced costs. In climate zoning, climate data and agroclimatic indices must be chosen according to the zoning objectives. High quality climatic data must be selected and validated. Following, homogeneous climatic zones are indentified. Viticultural zoning has to be validated, preferably so by eco-physiological studies. This paper is based on the unified terroir zoning methodology that is currently in preparation by the experts of the International Organisation of Vine and Wine (OIV).

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Cornelis VAN LEEUWEN (1,2), Benjamin BOIS (3), Jean-Philippe ROBY (1,2), Laure de RESSEGUIER (1,2)

(1) Univ. Bordeaux, ISVV, Ecophysiology and functional genomics of grapevines, UMR 1287, F-33140 Villenave d’Ornon, France
(2) Bordeaux Sciences Agro, ISVV, Ecophysiology and functional genomics, UMR 1287, F-33140 Villenave d’Ornon, France
(3) Centre de Recherches de Climatologie / Biogéosciences, UMR 6282, CNRS – Université de Bourgogne, 6 boulevard Gabriel, 21000 Dijon, France

Contact the author

Keywords

viticulture, terroir, zoning, soil, climate

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Peptides diversity and oxidative sensitivity: case of specific optimized inactivated yeasts

Estimation of the resistance of a wine against oxidation is of great importance for the wine. To that purpose, most of the commonly used chemical assays that are dedicated to estimate the antioxidant (or antiradical) capacity of a wine consist in measuring the capacity of the wine to reduce an oxidative compound or a stable radical.

Under trellis cover crop induces grapevine tolerance to bunch rot

Botrytis bunch rot occurrence is one of the most important limitations for the wine industry in humid environments. A positive correlation between grapevine growth and susceptibility to fungal pathogens has been found. In theory the effect of grapevine vegetative growth on bunch rot expression results from direct effects (cluster architecture, nitrogen status among others) and indirect ones (via microclimate). However, a reduction in bunch rot incidence can be achieved in some circumstances without major vine growth reduction. The present study was aimed to test the general hypothesis that bunch rot susceptibility is affected by vine vigor, but other factors associated with grapevine vegetative expression could be even more relevant.

Proposition of a simplified approach of the viticultural landscape

Une approche très simple de la lecture des paysages est proposée sur la base de l’expérience acquise par l’observation de divers terroirs du monde.

Cytochrome P450 CYP71BE5 from grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound, (-)-rotundone

(-)-Rotundone, an oxygenated sesquiterpene, is a potent odorant molecule with a characteristic spicy aroma existing in various plants including grapes1. It is considered as a significant compound notably in wines and grapes because of its low sensory threshold (16 ng L-1 in red wine, 8 ng L-1 in water) and aroma properties. (-)-Rotundone was first identified in red wine made from the grape cultivar Syrah (regionally called Shiraz) in Australia1, and then it was found in several grape varieties such as Duras, Grüner Veltliner, Schioppettino and Vespolina from Europe2, 3. Several environmental factors affecting the accumulation of (-)-Rotundone during the grape maturation, were reported such as ambient temperature4, soil properties and topography5, soil moisture from irrigation and light exposure in the bunch zone by leaf removal2.

Interest in measuring the grape texture to characterise grapes from different cultivation areas – Example of Cabernet franc from the Loire Valley

A two-bite compression test was applied on Cabernet franc grapes during two harvest seasons. The evolution of the texture parameters from véraison to harvest was studied and a new mechanical ripeness notion was introduced.