Terroir 2012 banner
IVES 9 IVES Conference Series 9 Towards a unified terroir zoning methodology in viticulture

Towards a unified terroir zoning methodology in viticulture

Abstract

In viticulture, terroir is a key concept that refers to an area and thus possesses a geographical dimension. Hence, zoning of viticultural terroir is an important issue. This paper addresses soil and climate related aspects of terroir zoning. The first step of the zoning process is a clear identification of the objectives that are being pursued. Soil zoning and climate zoning methods are presented separately, although both approaches are preferably carried out simultaneously, in order to take into account soil-climate interactions in the terroir effect. Definition of a scale adapted to the objectives is critical, particularly so in soil zoning. For soil zoning, the relevance of geology, geomorphology and pedology (soil science) is discussed. The use of new technologies (e.g. GIS or remote sensing) enables the production of more detailed maps at reduced costs. In climate zoning, climate data and agroclimatic indices must be chosen according to the zoning objectives. High quality climatic data must be selected and validated. Following, homogeneous climatic zones are indentified. Viticultural zoning has to be validated, preferably so by eco-physiological studies. This paper is based on the unified terroir zoning methodology that is currently in preparation by the experts of the International Organisation of Vine and Wine (OIV).

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Cornelis VAN LEEUWEN (1,2), Benjamin BOIS (3), Jean-Philippe ROBY (1,2), Laure de RESSEGUIER (1,2)

(1) Univ. Bordeaux, ISVV, Ecophysiology and functional genomics of grapevines, UMR 1287, F-33140 Villenave d’Ornon, France
(2) Bordeaux Sciences Agro, ISVV, Ecophysiology and functional genomics, UMR 1287, F-33140 Villenave d’Ornon, France
(3) Centre de Recherches de Climatologie / Biogéosciences, UMR 6282, CNRS – Université de Bourgogne, 6 boulevard Gabriel, 21000 Dijon, France

Contact the author

Keywords

viticulture, terroir, zoning, soil, climate

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2].

Drought affects vineyard soil microbiome: approach to select micro-organisms adapted to drought

Climate transition with frequent heat waves and long drought periods threatens grapevine productivity and wine quality in the Mediterranean regions. Microorganisms are known to contribute to plant fitness and to stimulate plant resilience against biotic and abiotic factors.
In this work, it was assessed the impact of long-term drought on soil microbiome associated to grapevine in open field in Alentejo, renowned Portuguese wine region.
Soil and plant tissues of drought tolerant Syrah cultivar exposed to three irrigation levels (100%- FI, 50%-DI ETc; rain-fed–NI) for 5 years were sampled for two years (2022-2023). Metabarcoding analysis of soil bacteria (16S V4 rRNA) and fungi (ITS sub-region) were integrated with soil physiochemical properties and leaves´ physiological data. Pre-dawn leaf water potential and stomatal conductance confirmed the imposed drought scenarios. Even though, α- and β-diversity of prokaryotic and eukaryotic microbial communities differed more by season than water availability, samples clustered according to soil water content and pH (p<0.05). Fungal communities show higher differences in the structure across treatments than bacteria. In 2023, 16 bacterial against 61 fungal ASVs were significatively different in abundance between NI and FI. Beijerinckiaceae, Bradyrhizobiaceae (Alphaproteobacteria) and Nocardioidaceae, Streptomycetaceae (Actinobacteria) families resulted to be significatively more abundant in NI, while Ascomycota, Basidyomicota and Mortierellomycota are the most important fungal phyla in NI. With culturomics data, this study aims to gather insights into how soil microbiome is remodelled under drought and contribute to select bacterial and fungal taxa with potential to mitigate drought stress in vineyards.

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.

Experimental vinification of withered grapes of Vitis vinifera “Muscat of Alexandria”

The objective of the present work is to investigate wine produced from dehydrated grapes and vinified according to classical Roman manuals.

METHODS – Locally produced Muscat of Alexandria’s grapes were used for the sweet wine production, grown in the experimental vineyard of Instituto Superior de Agronomia (Lisbon, Portugal). The grapes were harvested manually slightly over-ripe and subjected to greenhouse drying. After 7-10 days dried grapes were transported to an experimental winery for various operations (e.g., grape weighing, sorting, crushing/destemming). Several maceration protocols were used comprising the addition of saltwater and white wine to whole bunches or destemmed grapes. Fermentation was conducted with the addition of commercial yeast. The standard physico-chemical parameters of wines were determined according to the OIV standards.

Effect of post-harvest ozone treatment on secondary metabolites biosynthesis and accumulation in grapes and wine

The actual demand by consumers for safer and healthier food and beverage is pushing the wine sector to find alternative methods to avoid the use of sulphur dioxide in winemaking. Ozone is already used in the wine industry to produce sulphur dioxide-free wines through the patented method Purovino®.