Terroir 2012 banner
IVES 9 IVES Conference Series 9 Geostatistical analysis of the vineyards in the canton of Geneva in relation to soil and climate

Geostatistical analysis of the vineyards in the canton of Geneva in relation to soil and climate

Abstract

Soil and climate maps at the 1:10000 scales exist for more than 12’000 ha of Swiss vineyards. The use of these maps as consulting tools for growers remains difficult due to the complexity of the relationship between terroir and the large number of grape varieties planted. The current distribution of varieties and rootstocks is the result of a long optimization process. This study aims at analyzing the relationships between grape varieties, soil characteristics and climatic conditions.
The study was performed on the 1365 ha of Geneva’s vineyards with 3885 digitalized parcels. The 19 grape varieties planted on at least 5 ha were matched with the soil and potential radiation maps. The surface of each variety-soil combination and the mean radiation were calculated for each parcel.

The analysis showed that grape varieties were primarily planted according to meso-climatic conditions. Late ripening varieties, like Syrah or Merlot, were always planted on parcels receiving higher amounts of radiation than those planted with Pinot noir or Gamaret. Minimum radiation was calculated for each variety. Traditional grape varieties (e.g. Gamay or Chasselas) were planted in all meso-climates, indicating that the warmest plots were not judged to be too warm for early varieties. Regarding soil characteristics, early varieties were more present on BRUNISOL, which mainly represented flatter areas of the vineyards (10 % mean slope) and late varieties on steeper areas (mainly CALCOSOL with 16 % mean slope).
The present study revealed actual practices and criterions used by growers to make planting decisions. It might indicate minimum climatic and soil requirements for a given variety in the canton of Geneva. Continued monitoring may show the adjustments made by the growers to correct unsuccessful planting decisions. The analysis of these adjustments provides useful information for vineyard consultants.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Stéphane BURGOS, Elisabeth FORTIER

École d’Ingénieurs de Changins, rte de Duiller 50, 1260 Nyon

Contact the author

Keywords

grape varieties, soil, climate, terroir, SIG, geostatistic, Geneva

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Developing effective physiological strategies to rejuvenate virus-infected vineyards by lowering the virus load in infected grapevines

Context and purpose of the study. The wine industries face significant challenges from two highly detrimental viruses: leafroll and red blotch.

Distribution analysis of myo and scyllo-inositol in natural grape must

s it is well known, myo and scyllo-inositol are two characteristic sugars of grape must and, for this reason, their quantification has been proposed to control the authenticity of the concentrated and rectificated grape must.

Identification and evaluation of the winemaking sub-zones of the PDO Amyndeo winegrowing region

Context and purpose of the study. The concept of terroir encompasses the investigation of the physical environment’s influence on grapevine physiology, grape composition, and wine quality, with an emphasis on employing viticultural zoning techniques to systematically characterize and analyze terroirs.

Gestión de la mitigación por las empresas vitivinícolas: combinar sostenibilidad y rentabilidad

The transition to a decarbonized economy requires companies to adopt mitigation measures. The wine sector is one of the most affected by climate change and, therefore, interested in its mitigation. The question is how this process develops. To address this, we build on a previous study [1], which identified different types of Spanish wineries based on their sustainability approach.

VITIGEOSS Business Service: Task scheduling optimization in vineyards

Agriculture plantations are complex systems whose performance critically depends on the execution of several types of tasks with precise timing and efficiency to respond to different external factors. This is particularly true for orchards like vineyards, which need to be strictly monitored and regulated, as they are sensitive to diverse types of pests, and climate conditions. In these environments, managing and optimally scheduling the available work force and resources is not trivial and is usually done by teams of senior managers based on their experience. In this regard, having a baseline schedule could help them in the decision process and improve their results, in terms of time and resources spent.