Terroir 2012 banner
IVES 9 IVES Conference Series 9 Geostatistical analysis of the vineyards in the canton of Geneva in relation to soil and climate

Geostatistical analysis of the vineyards in the canton of Geneva in relation to soil and climate

Abstract

Soil and climate maps at the 1:10000 scales exist for more than 12’000 ha of Swiss vineyards. The use of these maps as consulting tools for growers remains difficult due to the complexity of the relationship between terroir and the large number of grape varieties planted. The current distribution of varieties and rootstocks is the result of a long optimization process. This study aims at analyzing the relationships between grape varieties, soil characteristics and climatic conditions.
The study was performed on the 1365 ha of Geneva’s vineyards with 3885 digitalized parcels. The 19 grape varieties planted on at least 5 ha were matched with the soil and potential radiation maps. The surface of each variety-soil combination and the mean radiation were calculated for each parcel.

The analysis showed that grape varieties were primarily planted according to meso-climatic conditions. Late ripening varieties, like Syrah or Merlot, were always planted on parcels receiving higher amounts of radiation than those planted with Pinot noir or Gamaret. Minimum radiation was calculated for each variety. Traditional grape varieties (e.g. Gamay or Chasselas) were planted in all meso-climates, indicating that the warmest plots were not judged to be too warm for early varieties. Regarding soil characteristics, early varieties were more present on BRUNISOL, which mainly represented flatter areas of the vineyards (10 % mean slope) and late varieties on steeper areas (mainly CALCOSOL with 16 % mean slope).
The present study revealed actual practices and criterions used by growers to make planting decisions. It might indicate minimum climatic and soil requirements for a given variety in the canton of Geneva. Continued monitoring may show the adjustments made by the growers to correct unsuccessful planting decisions. The analysis of these adjustments provides useful information for vineyard consultants.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Stéphane BURGOS, Elisabeth FORTIER

École d’Ingénieurs de Changins, rte de Duiller 50, 1260 Nyon

Contact the author

Keywords

grape varieties, soil, climate, terroir, SIG, geostatistic, Geneva

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Designing and managing a sustainable vineyard in a climate change scenario

Extension of the growing season, compression of the annual growth cycle and higher frequency and severity of weather extreme events are consistent features of global warming. While mitigation of factors causing global warming is necessary in the medium-long term, wine growers need “ready to go” adaptation practices to counteract negative effects bound to climate change. This must be done in a sustainably way, meaning that remunerative yield, desired grape quality, low production cost and environment friendly solutions must be effectively merged. In this work, we will review contribution given over the last two decades prioritizing issues related to scion and rootstock choice, changes in vineyard floor management, new perception related to the use of irrigation in vineyards, adaptation practices aimed at decompress maturity, solutions to counteract or minimize damages due to late frost and sunburn and, lastly, some hints on how precision viticulture can help with all of this.

Phenolic, antioxidant, and sensory heterogeneity of oenological tannins: what are their possible winemaking applications?

AIM: The aim of this work was to characterize 18 oenological tannins by the polyphenolic, antioxidant, and sensory point of view.

L’étude “terroirs d’Anjou”: un exemple de caractérisation intégrée des terroirs viticoles, utilisable à l’échelle parcellaire

Natural factors of the production (“terroir” and vintage) are known as an important element for identifying wines by their genuine typicité and their authenticity. The program “Terroirs d’Anjou” (1994-1999) aims at bringing the necessary scientific basis for a rational and reasoned exploitation of the terroir.

HRATA : A new sensory methodology using advantage of wine aromatic wheels

Wine is an intrinsically complex aromatic product. To formalize this aromatic diversity and the hierarchical structure of the aromas, it is common to present them in the form of a wheel of aromas. These are used for learning and communication purposes but never for the acquisition of sensory characteristics.

The wine microbial ecosystem: Molecular interactions between yeast species and evidence for higher order interactions

Fermenting grape juice represents one of the oldest continuously maintained anthropogenic microbial environments and supports a well-mapped microbial ecosystem. Several yeast and bacterial species dominate this ecosystem, and some of these species are part of the globally most studied and best understood individual organisms. Detailed physiological, cellular and molecular data have been generated on these individual species and have helped elucidate complex evolutionary processes such as the domestication of wine yeast strains of the species Saccharomyces cerevisiae. These data support the notion that the wine making environment represents an ecological niche of significant evolutionary relevance. Taken together, the data suggest that the wine fermentation ecosystem is an excellent model to study fundamental questions about the working of microbial ecosystems and on the impact of biotic selection pressures on microbial ecosystem functioning. Indeed, and although well mapped, the rules and molecular mechanisms that govern the interactions between microbial species within this, and other, ecosystems remain underexplored. Here we present data derived from several converging approaches, including microbiome data of spontaneous fermentations, the population dynamics of constructed consortia, the application of biotic selection pressures in directed laboratory evolution, and the physiological and molecular analysis of pairwise and higher order interactions between yeast species. The data reveal the importance of cell wall-related elements in interspecies interactions and in evolutionary adaptation and suggest that predictive modelling and biotechnological control of the wine ecosystem during fermentation are promising strategies for wine making in future.