Terroir 2012 banner
IVES 9 IVES Conference Series 9 Geostatistical analysis of the vineyards in the canton of Geneva in relation to soil and climate

Geostatistical analysis of the vineyards in the canton of Geneva in relation to soil and climate

Abstract

Soil and climate maps at the 1:10000 scales exist for more than 12’000 ha of Swiss vineyards. The use of these maps as consulting tools for growers remains difficult due to the complexity of the relationship between terroir and the large number of grape varieties planted. The current distribution of varieties and rootstocks is the result of a long optimization process. This study aims at analyzing the relationships between grape varieties, soil characteristics and climatic conditions.
The study was performed on the 1365 ha of Geneva’s vineyards with 3885 digitalized parcels. The 19 grape varieties planted on at least 5 ha were matched with the soil and potential radiation maps. The surface of each variety-soil combination and the mean radiation were calculated for each parcel.

The analysis showed that grape varieties were primarily planted according to meso-climatic conditions. Late ripening varieties, like Syrah or Merlot, were always planted on parcels receiving higher amounts of radiation than those planted with Pinot noir or Gamaret. Minimum radiation was calculated for each variety. Traditional grape varieties (e.g. Gamay or Chasselas) were planted in all meso-climates, indicating that the warmest plots were not judged to be too warm for early varieties. Regarding soil characteristics, early varieties were more present on BRUNISOL, which mainly represented flatter areas of the vineyards (10 % mean slope) and late varieties on steeper areas (mainly CALCOSOL with 16 % mean slope).
The present study revealed actual practices and criterions used by growers to make planting decisions. It might indicate minimum climatic and soil requirements for a given variety in the canton of Geneva. Continued monitoring may show the adjustments made by the growers to correct unsuccessful planting decisions. The analysis of these adjustments provides useful information for vineyard consultants.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Stéphane BURGOS, Elisabeth FORTIER

École d’Ingénieurs de Changins, rte de Duiller 50, 1260 Nyon

Contact the author

Keywords

grape varieties, soil, climate, terroir, SIG, geostatistic, Geneva

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Évolution de la surmaturation du cépage Chenin dans différents terroirs des Coteaux du Layon en relation avec les variables agroviticoles

The French “Coteaux du Layon” Appellation of Origin has built its Jarne on the production of sweet white wines. A network of experimental plots, based on the “terroir” concept, was established in 1990; it allows for the follow-up of the overripening behaviour of the grapes in relation with the agroviticultural parameters.

New molecular evidence of wine yeast-bacteria interaction unraveled by untargeted metabolomic profiling

Bacterial malolactic fermentation (MLF) has a considerable impact on wine quality. The yeast strain used for primary fermentation can consistently stimulate (MLF+ phenotype) or inhibit (MLF- phenotype) malolactic bacteria and the MLF process as a function of numerous winemaking practices, but the molecular evidence behind still remains a mystery. In this study, such evidence was elucidated by the direct comparison of extracellular metabolic profiles of MLF+ and MLF- yeast phenotypes. Untargeted metabolomics combining ultrahigh-resolution FT-ICR-MS analysis, powerful machine learning methods and a comprehensive wine metabolite database, discovered around 800 putative biomarkers and 2500 unknown masses involved in phenotypic distinction.

Accumulation of polyphenols in Barbera and Nebbiolo leaves during the vegetative season

Grapevine berries produce thousands of secondary metabolites of diverse chemical nature that have been largely detailed in the past due to their importance for defining wine quality. The wide Vitis vinifera diversity, resulting in thousands of different varieties well detailed in many studies regarding berries, is still not investigated in vegetative organs, leaves in particular. Deepening knowledge related to this aspect could be of great interest for many reasons (for example the possibility of using leaf extract for pharmaceutical, cosmetic and nutrition purposes) but, above all, for understanding the susceptibility of different grapevine varieties to pathogens.

Haplotype-resolved genome assemblies of Chasselas and Ugni Blanc

Haplotype-resolved genome assemblies were produced for Chasselas and Ugni Blanc, two heterozygous real-field genetic pool Vitis vinifera cultivars by combining high-fidelity long-read sequencing (HiFi) and high‐throughput chromosome conformation capture (Hi-C). The telomere-to-telomere full coverage of the chromosomes allowed us to assemble separately the two haplo-genomes of both cultivars and revealed structural variations between the two haplotypes of a given cultivar.

Modelling vine water stress during a critical period and potential yield reduction rate in European wine regions: a retrospective analysis

Most European vineyards are managed under rainfed conditions, where seasonal water deficit has become increasingly important. The flowering-veraison phenophase represents an important period for vine response to water stress, which is seldomly thoroughly evaluated. Therefore, we aim to quantify the flowering-veraison water stress levels using Crop Water Stress Indicator (CWSI) over 1986–2015 for important European wine regions, and to assess the respective potential Yield Lose Rate (YLR). Additionally, we also investigate whether an advanced flowering-veraison phase may help alleviating the water stress with improved yield. A process-based grapevine model STICS is employed, which has been extensively calibrated for flowering and veraison stages using observed data at 38 locations with 10 different grapevine varieties. Subsequently, the model is being implemented at the regional level, considering site-specific calibration results and gridded climate and soil datasets. The findings suggest wine regions with stronger flowering-veraison CWSI tend to have higher potential YLR. However, contrasting patterns are found between wine regions in France-Germany-Luxembourg and Italy-Portugal-Spain. The former tends to have slight-to-moderate drought conditions (CWSI<0.5) and a negligible-to-moderate YLR (<30%), whereas the latter possesses severe-to-extreme CWSI (>0.5) and substantial YLR (>40%). Wine regions prone to a high drought risk (CWSI>0.75) are also identified, which are concentrated in southern Mediterranean Europe. An advanced flowering-veraison phase may have benefited from cooler temperatures and a higher fraction of spring precipitation in wine regions of Italy-Portugal-Spain, resulting in alleviated CWSI and moderate reductions of YLR. For those of France-Germany-Luxembourg, this can have reduced flowering-veraison precipitation, but prevalent alleviations of YLR are also found, possibly because of shifted phase towards a cooler growing season with reduced evaporative demands. Overall, such a retrospective analysis might provide new insights towards better management of seasonal water deficit for conventionally vulnerable Mediterranean wine regions, but also for relatively cooler and wetter Central European regions.