Terroir 2012 banner
IVES 9 IVES Conference Series 9 Pinot noir: an endemic or a flexible variety?

Pinot noir: an endemic or a flexible variety?

Abstract

Pinot noir has its historical roots in Burgundy and is generally considered as an endemic vine variety which means that its adaptation is very specific to this environment and that its wines are the most expressive in the same particular situations. Now, Pinot noir has become an international variety because growers rely on its exceptional œnological potential and reputation to reproduce something excellent under their own conditions, and also because the general style of the wines is original and dominated by ‘finesse’ which is a new trend on the international wine market. In that context, it is interesting to evaluate the ability Pinot noir has to adapt, either as a vine variety interacting in a first time with the climate which is the entrance door to the terroir,, or as a wine in terms of ‘typicity’ and specific elements revealed by sensory analysis.

The method which is used is a survey of some sensory analysis of Pinot noir wines around the world done by the authors, which is based, first on the characterization of the degree of maturation on the main trend called ‘fruity unfolding’ (from non mature, to fresh, then mature, dried, jam or cooked fruit), second on the identification of some very specific elements such as general balance (acidity) or particular fruits (wild cherry) or elements of the ‘derived series’ (floral, spicy, mineral, balsamic, mushroom characters…).

The main analysis concerns the type of macro/meso-climate in relation to the wine ‘typicity’. The interest of the study is that wines are produced under a maximum range of situations. Some Burgundy terroirs under Semi-Continental climate being references and considered as able to produce some exceptional wines, the following climates are chosen: Continental (Cosne s/Loire, Alsace, Franconia, Valais), Continental Semi-Arid (Gansu), Cool – Mountain (Eastern Pyrénées – Hautes vallées), Cool (North Oregon, Australia – Victoria), Temperate – Cool (Loir et Cher, New Zealand – Malborough), Temperate (Friuli,), Mediterranean – Temperate (High Languedoc, Penedes, California – Monterey), Mediterranean – Mountain Kosovo), Mediterranean (Languedoc plain), Mediterranean – Semi-Arid (Mendoza-Tupungato), Subtropical (Carmelo – Uruguay), Subequatorial – High Altitude (Boyaca– Colombia).
The results show that:

Pinot noir can be cultivated and produce quality wines under many climates within the range of 1700-2300 °C; days of Huglin’s Heliothermal Index, which gives some security in front of the climate change.

The type of adaptation of Pinot noir depends on the elements of the wine ‘typicity’: it may be considered as ‘flexible’ because it reproduces very often on a wide range of climates the sensory characteristics of ‘fruity-cherry’ and ‘balance/elegance’; it may be considered as ‘endemic’ because it expresses a lot of specific sensory characters which depend on the ‘viticultural terroir’ (perception of acidity, wild cherry, artemisia, violet, mild spices, leather, truffle, chocolate, degree of excellence…).
That study needs to be deepened in the fields of micro-Climatology, .sensory analysis, grape berry Biochemistry.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Alain CARBONNEAU (1), Robert BOIDRON (2)

(1) Professor of Viticulture of Montpellier SupAgro, IHEV bâtiment 28, 2 place Viala, 34060 Montpellier cedex
(2) Honorary Director of ENTAV, ‘La Rochette’, 71960 La Roche Vineuse

Contact the author

Keywords

Pinot noir, Burgundy, world climates, adaptation, wine sensory analysis,’typicity’

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Influence of protein stabilization with aspergillopepsin I on wine aroma composition

The protein haze formation in white and rosé wines during storage, shipping and commercialization has always been an important issue for winemakers. Among the various solutions industrially proposed, the use of bentonite is certainly the most widespread. However, the harmful effects of this treatment are known either in terms of wine volume loss and wine flavour and aroma.

Chemical characterization of distinctive aroma profiles of Valpolicella and Amarone wines

Valpolicella is an Italian wine producing region, famous for the production of high-quality red wines. A distinctive characteristic of this region is the extensive use of post-harvest withering.

Impact of changing climatic factors on physiological and vegetative growth

Scientific information on grapevine response to predicted levels of climate parameters is scarce and not sufficient to properly position the Wine Industry for the future. It is critical that the combined effects of increased temperature and CO2 on grapevines should be examined, without omitting the important link to soil water conditions. The purpose of this study is to quantify the effects of envisioned changes in climatic parameters on the functioning and growth of young grafted grapevines under controlled conditions, simulating expected future climate changes. Scientific knowledge of precisely how the newly-planted grapevine will react morphologically, anatomically and physiologically (at leaf, root and whole plant level) to the expected changes in important climatic parameters will enable producers to make better-informed decisions regarding terroir, cultivar and rootstock choices as well as the adaptation of current cultivation practices.

Metschnikowia pulcherrima: A valuable microbial bioresource from wine for smart agrifood

The yeast Metschnikowia pulcherrima is a microorganism of great biotechnological interest, both for improving winemaking processes and for other applications outside the wine supply chain.

Elucidating the biological function of EPFL9 in grapevine roots

Epidermal Patterning Factors are a class of cysteine rich peptides known to be involved in many developmental processes. The role of EPF1, EPF2 and EPFL9 in controlling leaf stomata formation has been well described in model plants and cereals, and recently also in grapevine, while little is known about their activity in other organs. The aim of our study is to investigate whether VviEPFL9-2 can have a specific biological function in grapevine roots, where it resulted to be expressed. As grapevine is cultivated in the form of a grafted plant, we focused our study on the commonly used rootstock Kober 5BB (Vitis berlandieri x Vitis riparia). VviEPFL9-2 was edited in Kober 5BB plants using Agrobacterium tumefaciens transformation of embryogenic calli and the CRISPR/Cas9 technology. The phenotypic evaluation in greenhouse indicated that, as expected, the leaves of knock-out (KO) plants have a significant lower stomatal density compared to WT, associated with a lower stomatal conductance.