Terroir 2012 banner
IVES 9 IVES Conference Series 9 Pinot noir: an endemic or a flexible variety?

Pinot noir: an endemic or a flexible variety?

Abstract

Pinot noir has its historical roots in Burgundy and is generally considered as an endemic vine variety which means that its adaptation is very specific to this environment and that its wines are the most expressive in the same particular situations. Now, Pinot noir has become an international variety because growers rely on its exceptional œnological potential and reputation to reproduce something excellent under their own conditions, and also because the general style of the wines is original and dominated by ‘finesse’ which is a new trend on the international wine market. In that context, it is interesting to evaluate the ability Pinot noir has to adapt, either as a vine variety interacting in a first time with the climate which is the entrance door to the terroir,, or as a wine in terms of ‘typicity’ and specific elements revealed by sensory analysis.

The method which is used is a survey of some sensory analysis of Pinot noir wines around the world done by the authors, which is based, first on the characterization of the degree of maturation on the main trend called ‘fruity unfolding’ (from non mature, to fresh, then mature, dried, jam or cooked fruit), second on the identification of some very specific elements such as general balance (acidity) or particular fruits (wild cherry) or elements of the ‘derived series’ (floral, spicy, mineral, balsamic, mushroom characters…).

The main analysis concerns the type of macro/meso-climate in relation to the wine ‘typicity’. The interest of the study is that wines are produced under a maximum range of situations. Some Burgundy terroirs under Semi-Continental climate being references and considered as able to produce some exceptional wines, the following climates are chosen: Continental (Cosne s/Loire, Alsace, Franconia, Valais), Continental Semi-Arid (Gansu), Cool – Mountain (Eastern Pyrénées – Hautes vallées), Cool (North Oregon, Australia – Victoria), Temperate – Cool (Loir et Cher, New Zealand – Malborough), Temperate (Friuli,), Mediterranean – Temperate (High Languedoc, Penedes, California – Monterey), Mediterranean – Mountain Kosovo), Mediterranean (Languedoc plain), Mediterranean – Semi-Arid (Mendoza-Tupungato), Subtropical (Carmelo – Uruguay), Subequatorial – High Altitude (Boyaca– Colombia).
The results show that:

Pinot noir can be cultivated and produce quality wines under many climates within the range of 1700-2300 °C; days of Huglin’s Heliothermal Index, which gives some security in front of the climate change.

The type of adaptation of Pinot noir depends on the elements of the wine ‘typicity’: it may be considered as ‘flexible’ because it reproduces very often on a wide range of climates the sensory characteristics of ‘fruity-cherry’ and ‘balance/elegance’; it may be considered as ‘endemic’ because it expresses a lot of specific sensory characters which depend on the ‘viticultural terroir’ (perception of acidity, wild cherry, artemisia, violet, mild spices, leather, truffle, chocolate, degree of excellence…).
That study needs to be deepened in the fields of micro-Climatology, .sensory analysis, grape berry Biochemistry.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Alain CARBONNEAU (1), Robert BOIDRON (2)

(1) Professor of Viticulture of Montpellier SupAgro, IHEV bâtiment 28, 2 place Viala, 34060 Montpellier cedex
(2) Honorary Director of ENTAV, ‘La Rochette’, 71960 La Roche Vineuse

Contact the author

Keywords

Pinot noir, Burgundy, world climates, adaptation, wine sensory analysis,’typicity’

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Polyphenols in kombucha: impact of infusion time on extraction and investigation of their behavior during “fermentation”

Kombucha is a non-alcoholic beverage made of sugared tea that is transformed by a symbiotic consortium of yeasts and bacteria. Polyphenols are expected to be responsible of several health benefits attributed to kombucha consumption, among other metabolites. This study investigated the impact of tea infusion time and of kombucha “fermentation”, on total phenolic content,

Flor yeast diversity and dynamics in biologically aged wines

Wine biological aging is characterized by the development of yeast strains that form a biofilm on the wine surface after alcoholic fermentation. These yeasts, known as flor yeasts, form a velum that protects the wine from oxidation during aging. Thirty-nine velums aged from 1 to 6 years were sampled from “Vin jaune” from two different cellars. We show for the first time that these velums possess various aspects in term of color and surface aspects. Surprisingly, the heterogeneous velums are mostly composed of one species, S. cerevisiae. Scanning electron microscope observations of these velums revealed unprecedented biofilm structures and various yeast morphologies formed by the sole S. cerevisiae species.

Unraveling vineyard site from vintage contributions: Elemental composition of site-specific Pinot noir wines across multiple vintages

Understanding vineyard site contribution to elemental composition of wines has, historically, been limited due to lack of continuity across multiple vintages, as well as lack of uniformity in scion clone and lack of controlled pilot-scale winemaking conditions.  We recently completed our fifth vintage, and have elemental composition characterizing wines from four vintages (2015–2018)

Effects of water and nitrogen uptake, and soil temperature, on vine development, berry ripening and wine quality of Cabernet-Sauvignon, Cabernet franc and Merlot (Saint-Emilion, 1997)

Wine quality depends largely on berry ripening conditions in relation to soil and climat. The influence of the soil has been studied in Bordeaux since the early Seventies (SEGUIN, 1970; DUTEAU et al., 1981; VAN LEEUWEN, 1991; VAN LEEUWEN et SEGUIN, 1994) and, more recently, in the Val de Loire (MORLAT, 1989), the Alsace (LEBON, 1993) and the Costières de Nîmes regions (MARTIN, 1995).

Response to powdery and downy mildew of varieties with disease resistance genes (PIWI)

Erysiphe necator and Plasmopara viticola are the causal agents of powdery and downy mildew on grapevines, leading to significant economic losses. Numerous chemical treatments are applied to control these diseases, leading to environmental problems and the appearance of resistance to these products. Therefore, the study of new strategies to achieve the objectives of sustainable development is a priority. In this sense, the use of new varieties resistant to these diseases may be an option of interest. The objective of this work was to analyze the degree of resistance of 9 varieties with downy mildew resistance genes (Rpv3 and/or Rpv12), four of which also carry a powdery mildew resistance gene (Ren 1) by in vitro inoculation assays.