Terroir 2012 banner
IVES 9 IVES Conference Series 9 Pinot noir: an endemic or a flexible variety?

Pinot noir: an endemic or a flexible variety?

Abstract

Pinot noir has its historical roots in Burgundy and is generally considered as an endemic vine variety which means that its adaptation is very specific to this environment and that its wines are the most expressive in the same particular situations. Now, Pinot noir has become an international variety because growers rely on its exceptional œnological potential and reputation to reproduce something excellent under their own conditions, and also because the general style of the wines is original and dominated by ‘finesse’ which is a new trend on the international wine market. In that context, it is interesting to evaluate the ability Pinot noir has to adapt, either as a vine variety interacting in a first time with the climate which is the entrance door to the terroir,, or as a wine in terms of ‘typicity’ and specific elements revealed by sensory analysis.

The method which is used is a survey of some sensory analysis of Pinot noir wines around the world done by the authors, which is based, first on the characterization of the degree of maturation on the main trend called ‘fruity unfolding’ (from non mature, to fresh, then mature, dried, jam or cooked fruit), second on the identification of some very specific elements such as general balance (acidity) or particular fruits (wild cherry) or elements of the ‘derived series’ (floral, spicy, mineral, balsamic, mushroom characters…).

The main analysis concerns the type of macro/meso-climate in relation to the wine ‘typicity’. The interest of the study is that wines are produced under a maximum range of situations. Some Burgundy terroirs under Semi-Continental climate being references and considered as able to produce some exceptional wines, the following climates are chosen: Continental (Cosne s/Loire, Alsace, Franconia, Valais), Continental Semi-Arid (Gansu), Cool – Mountain (Eastern Pyrénées – Hautes vallées), Cool (North Oregon, Australia – Victoria), Temperate – Cool (Loir et Cher, New Zealand – Malborough), Temperate (Friuli,), Mediterranean – Temperate (High Languedoc, Penedes, California – Monterey), Mediterranean – Mountain Kosovo), Mediterranean (Languedoc plain), Mediterranean – Semi-Arid (Mendoza-Tupungato), Subtropical (Carmelo – Uruguay), Subequatorial – High Altitude (Boyaca– Colombia).
The results show that:

Pinot noir can be cultivated and produce quality wines under many climates within the range of 1700-2300 °C; days of Huglin’s Heliothermal Index, which gives some security in front of the climate change.

The type of adaptation of Pinot noir depends on the elements of the wine ‘typicity’: it may be considered as ‘flexible’ because it reproduces very often on a wide range of climates the sensory characteristics of ‘fruity-cherry’ and ‘balance/elegance’; it may be considered as ‘endemic’ because it expresses a lot of specific sensory characters which depend on the ‘viticultural terroir’ (perception of acidity, wild cherry, artemisia, violet, mild spices, leather, truffle, chocolate, degree of excellence…).
That study needs to be deepened in the fields of micro-Climatology, .sensory analysis, grape berry Biochemistry.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Alain CARBONNEAU (1), Robert BOIDRON (2)

(1) Professor of Viticulture of Montpellier SupAgro, IHEV bâtiment 28, 2 place Viala, 34060 Montpellier cedex
(2) Honorary Director of ENTAV, ‘La Rochette’, 71960 La Roche Vineuse

Contact the author

Keywords

Pinot noir, Burgundy, world climates, adaptation, wine sensory analysis,’typicity’

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Time stability of visitors’ preferences for preserving the worldwide cultural landscape alto douro wine region

The Alto Douro Wine Region (ADWR) was classified a world heritage site, specifically as a cultural landscape, by UNESCO, in 2001. The well known “Porto Wine” and other high quality wines are produced in the Douro region. As an attraction and touristic site, the cultural site has to meet the needs of more demanding visitors and to compete with a growing number of cultural sites, also classified by UNESCO. To achieve this goal, landscape managers and public authorities have much to profit from knowing and understanding visitors’ preferences regarding the attributes associated to its outstanding universal value.

Effect of pre-fermentative addition of oenological tannins on the volatile composition and colour characteristics of white wines

This study investigates the effect of pre-fermentative addition of oenological tannins on basic physicochemical parameters, total polyphenols index (TPI), antioxidant activity (DPPH method), colour traits, and volatile organic compounds (VOCs) of white wines made from ‘Vermentino’ or ‘Erbaluce’ grapes (Vitis vinifera).

Leaf necrosis induced by the insecticide carbaryl in Vitis rupestris ‘B38’

Carbaryl is an acetylcholine esterase inhibitor-type insecticide used for pest control on grapevine. We repeatedly observed the occurrence of interveinal leaf necrosis following carbaryl spray application in a Vitis rupestris x Vitis riparia F1 hybrid progeny vineyard. Spray applications induced necrosis in this progeny under both Missouri and New York field conditions an approximate one-to-one sensitive-to-insensitive segregation ratio and with 42% concordance. Results of subsequent in vitro experiments established causality between carbaryl treatment and leaf necrosis and confirmed the pattern of segregation observed in the field. We consistently map this phenotype to a major QTL on chromosome 16 of the female parent V. rupestris ‘B38’ regardless of whether we used field or in vitro-generated phenotype data.

Modelling vine water stress during a critical period and potential yield reduction rate in European wine regions: a retrospective analysis

Most European vineyards are managed under rainfed conditions, where seasonal water deficit has become increasingly important. The flowering-veraison phenophase represents an important period for vine response to water stress, which is seldomly thoroughly evaluated. Therefore, we aim to quantify the flowering-veraison water stress levels using Crop Water Stress Indicator (CWSI) over 1986–2015 for important European wine regions, and to assess the respective potential Yield Lose Rate (YLR). Additionally, we also investigate whether an advanced flowering-veraison phase may help alleviating the water stress with improved yield. A process-based grapevine model STICS is employed, which has been extensively calibrated for flowering and veraison stages using observed data at 38 locations with 10 different grapevine varieties. Subsequently, the model is being implemented at the regional level, considering site-specific calibration results and gridded climate and soil datasets. The findings suggest wine regions with stronger flowering-veraison CWSI tend to have higher potential YLR. However, contrasting patterns are found between wine regions in France-Germany-Luxembourg and Italy-Portugal-Spain. The former tends to have slight-to-moderate drought conditions (CWSI<0.5) and a negligible-to-moderate YLR (<30%), whereas the latter possesses severe-to-extreme CWSI (>0.5) and substantial YLR (>40%). Wine regions prone to a high drought risk (CWSI>0.75) are also identified, which are concentrated in southern Mediterranean Europe. An advanced flowering-veraison phase may have benefited from cooler temperatures and a higher fraction of spring precipitation in wine regions of Italy-Portugal-Spain, resulting in alleviated CWSI and moderate reductions of YLR. For those of France-Germany-Luxembourg, this can have reduced flowering-veraison precipitation, but prevalent alleviations of YLR are also found, possibly because of shifted phase towards a cooler growing season with reduced evaporative demands. Overall, such a retrospective analysis might provide new insights towards better management of seasonal water deficit for conventionally vulnerable Mediterranean wine regions, but also for relatively cooler and wetter Central European regions.

Towards multi-purpose valorisation of polyphenols from grape pomace: Pressurized liquid extraction coupled to purification by membrane processes

Grape by-products (including skins, seeds, stems and vine shoots) are rich in health promoting polyphenols. Their extraction from winery waste and their following purification are of special interest to produce extracts with high added value compounds. Meanwhile, the growing concern over environmental problems associated with economic constraints, require the development of environmentally sustainable extraction technologies. The extraction using semi-continuous subcritical water, as a natural solvent at high temperature and high pressure a technology is promising “green” technology that is environmentally friendly, energy efficient and improve the extraction process in plant tissues.