Terroir 2012 banner
IVES 9 IVES Conference Series 9 Pinot noir: an endemic or a flexible variety?

Pinot noir: an endemic or a flexible variety?

Abstract

Pinot noir has its historical roots in Burgundy and is generally considered as an endemic vine variety which means that its adaptation is very specific to this environment and that its wines are the most expressive in the same particular situations. Now, Pinot noir has become an international variety because growers rely on its exceptional œnological potential and reputation to reproduce something excellent under their own conditions, and also because the general style of the wines is original and dominated by ‘finesse’ which is a new trend on the international wine market. In that context, it is interesting to evaluate the ability Pinot noir has to adapt, either as a vine variety interacting in a first time with the climate which is the entrance door to the terroir,, or as a wine in terms of ‘typicity’ and specific elements revealed by sensory analysis.

The method which is used is a survey of some sensory analysis of Pinot noir wines around the world done by the authors, which is based, first on the characterization of the degree of maturation on the main trend called ‘fruity unfolding’ (from non mature, to fresh, then mature, dried, jam or cooked fruit), second on the identification of some very specific elements such as general balance (acidity) or particular fruits (wild cherry) or elements of the ‘derived series’ (floral, spicy, mineral, balsamic, mushroom characters…).

The main analysis concerns the type of macro/meso-climate in relation to the wine ‘typicity’. The interest of the study is that wines are produced under a maximum range of situations. Some Burgundy terroirs under Semi-Continental climate being references and considered as able to produce some exceptional wines, the following climates are chosen: Continental (Cosne s/Loire, Alsace, Franconia, Valais), Continental Semi-Arid (Gansu), Cool – Mountain (Eastern Pyrénées – Hautes vallées), Cool (North Oregon, Australia – Victoria), Temperate – Cool (Loir et Cher, New Zealand – Malborough), Temperate (Friuli,), Mediterranean – Temperate (High Languedoc, Penedes, California – Monterey), Mediterranean – Mountain Kosovo), Mediterranean (Languedoc plain), Mediterranean – Semi-Arid (Mendoza-Tupungato), Subtropical (Carmelo – Uruguay), Subequatorial – High Altitude (Boyaca– Colombia).
The results show that:

Pinot noir can be cultivated and produce quality wines under many climates within the range of 1700-2300 °C; days of Huglin’s Heliothermal Index, which gives some security in front of the climate change.

The type of adaptation of Pinot noir depends on the elements of the wine ‘typicity’: it may be considered as ‘flexible’ because it reproduces very often on a wide range of climates the sensory characteristics of ‘fruity-cherry’ and ‘balance/elegance’; it may be considered as ‘endemic’ because it expresses a lot of specific sensory characters which depend on the ‘viticultural terroir’ (perception of acidity, wild cherry, artemisia, violet, mild spices, leather, truffle, chocolate, degree of excellence…).
That study needs to be deepened in the fields of micro-Climatology, .sensory analysis, grape berry Biochemistry.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Alain CARBONNEAU (1), Robert BOIDRON (2)

(1) Professor of Viticulture of Montpellier SupAgro, IHEV bâtiment 28, 2 place Viala, 34060 Montpellier cedex
(2) Honorary Director of ENTAV, ‘La Rochette’, 71960 La Roche Vineuse

Contact the author

Keywords

Pinot noir, Burgundy, world climates, adaptation, wine sensory analysis,’typicity’

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Red wine astringency and the influence of wine–saliva aggregates on oral lubrication

Oral tribology receives growing attention in the field of food sciences as it offers great opportunities to establish correlations between physical parameters, such as the coefficient of friction, and sensory perceptions in the human mouth.

Quelles cibles moléculaires pourraient expliquer l’effet du terroir sur la composition des baies en sucres et acides?

Le manque de connaissances concernant la physiologie de la maturation du raisin a longtemps interdit d’interpréter l’effet du terroir ou du millésime sur la qualité des vendanges en termes moléculaires. L’hypothèse selon laquelle c’est la perméabilité membranaire qui contrôlerait le sens comme l’intensité du stockage des acides est pourtant déjà ancienne (1). L’étude du transport des acides organiques et de son coût énergétique permet d’avancer certaines hypothèses concemant les sites potentiels de la régulation du contenu en sucres et acides du raisin sous l’effet de paramètres environnementaux.

Influence of polysaccharide extracts from wine by-products on the volatile composition of sparkling white wines

In the production of sparkling wines, during the second fermentation, mannoproteins are released by yeast autolysis, which affect the quality of the wines. The effect of mannoproteins has been extensively studied, and may affect aroma and foam quality. However, there are no studies on the effect of other polysaccharides such as those from grapes. Considering the large production of waste from the wine industry, it was proposed to obtain polysaccharide-rich extracts from some of these by-products[1].

Amino nitrogen content in grapes: the impact of crop limitation

As an essential element for grapevine development and yield, nitrogen is also involved in the winemaking process and largely affects wine composition. Grape must amino nitrogen deficiency affects the alcoholic fermentation kinetics and alters the development of wine aroma precursors. It is therefore essential to control and optimize nitrogen use efficiency by the plant to guarantee suitable grape nitrogen composition at harvest. Understanding the impact of environmental conditions and cultural practices on the plant nitrogen metabolism would allow us to better orientate our technical choices with the objective of quality and sustainability (less inputs, higher efficiency). This trial focuses on the impact of crop limitation – that is a common practice in European viticulture – on nitrogen distribution in the plant and particularly on grape nitrogen composition. A wide gradient of crop load was set up in a homogeneous plot of Chasselas (Vitis vinifera) in the experimental vineyard of Agroscope, Switzerland. Dry weight and nitrogen dynamics were monitored in the roots, trunk, canopy and grapes, during two consecutive years, using a 15N-labeling method. Grape amino nitrogen content was assessed in both years, at veraison and at harvest. The close relationship between fruits and roots in the maintenance of plant nitrogen balance was highlighted. Interestingly, grape nitrogen concentration remained unchanged regardless of crop load to the detriment of the growth and nitrogen content of the roots. Meanwhile, the size and the nitrogen concentration of the canopy were not affected. Leaf gas exchange rates were reduced in response to lower yield conditions, reducing carbon and nitrogen assimilation and increasing intrinsic water use efficiency. The must amino nitrogen profiles could be discriminated as a function of crop load. These findings demonstrate the impact of plant balance on grape nitrogen composition and contribute to the improvement of predictive models and sustainable cultural practices in perennial crops.

GC-O and olfactoscan approaches to reveal premature aging markers in Chardonnay wine

Molecular markers of wine oxydation, such as sotolon or Strecker’s aldehydes that induce respectively nut or curry and boiled vegetables or wilted rose odors, can be percieved as a default by consumers. These volatile compounds are especially formed during the premature aging of wine, but it is likely that several contributing compounds are still unknown as is their combined contribution. This study was carried out to identify the markers of oxydation in Chardonnay wine by Gas Chromatography Olfactometry (GC-O) and to study the impact of these markers on the complex wine aromatic buffer using the Olfactoscan approach.A Chardonnay wine (2018-vintage), taken after malolactic fermentation without sulphites addition, was submitted to an artificial oxidation to simulate more or less prononced premature oxidation. Volatile compounds were extracted by Solid-Phase Extraction (SPE) and analysed by GC-O with a panel of 13 trained subjects. The same extract was also submitted to a second analysis based on the Olfactoscan technique, which allowed to evaluate the impact of each volatile compounds on the complex aromatic buffer of a non-oxidized wine delivered as background odor. Preliminary results revealed three types of behavior. On the one hand, several odor zones appeared only with the background odour, suggesting a synergy effect induced by the compounds in the aromatic buffer. Conversely, odor-active compounds could not be perceived within the background odor suggesting a masking effect. Finally several compounds were found to contribute as key odorants for wine oxydation once mixed with the aromatic buffer. These compounds are still to be identified using complementary techniques.