Terroir 2012 banner
IVES 9 IVES Conference Series 9 Pinot noir: an endemic or a flexible variety?

Pinot noir: an endemic or a flexible variety?

Abstract

Pinot noir has its historical roots in Burgundy and is generally considered as an endemic vine variety which means that its adaptation is very specific to this environment and that its wines are the most expressive in the same particular situations. Now, Pinot noir has become an international variety because growers rely on its exceptional œnological potential and reputation to reproduce something excellent under their own conditions, and also because the general style of the wines is original and dominated by ‘finesse’ which is a new trend on the international wine market. In that context, it is interesting to evaluate the ability Pinot noir has to adapt, either as a vine variety interacting in a first time with the climate which is the entrance door to the terroir,, or as a wine in terms of ‘typicity’ and specific elements revealed by sensory analysis.

The method which is used is a survey of some sensory analysis of Pinot noir wines around the world done by the authors, which is based, first on the characterization of the degree of maturation on the main trend called ‘fruity unfolding’ (from non mature, to fresh, then mature, dried, jam or cooked fruit), second on the identification of some very specific elements such as general balance (acidity) or particular fruits (wild cherry) or elements of the ‘derived series’ (floral, spicy, mineral, balsamic, mushroom characters…).

The main analysis concerns the type of macro/meso-climate in relation to the wine ‘typicity’. The interest of the study is that wines are produced under a maximum range of situations. Some Burgundy terroirs under Semi-Continental climate being references and considered as able to produce some exceptional wines, the following climates are chosen: Continental (Cosne s/Loire, Alsace, Franconia, Valais), Continental Semi-Arid (Gansu), Cool – Mountain (Eastern Pyrénées – Hautes vallées), Cool (North Oregon, Australia – Victoria), Temperate – Cool (Loir et Cher, New Zealand – Malborough), Temperate (Friuli,), Mediterranean – Temperate (High Languedoc, Penedes, California – Monterey), Mediterranean – Mountain Kosovo), Mediterranean (Languedoc plain), Mediterranean – Semi-Arid (Mendoza-Tupungato), Subtropical (Carmelo – Uruguay), Subequatorial – High Altitude (Boyaca– Colombia).
The results show that:

Pinot noir can be cultivated and produce quality wines under many climates within the range of 1700-2300 °C; days of Huglin’s Heliothermal Index, which gives some security in front of the climate change.

The type of adaptation of Pinot noir depends on the elements of the wine ‘typicity’: it may be considered as ‘flexible’ because it reproduces very often on a wide range of climates the sensory characteristics of ‘fruity-cherry’ and ‘balance/elegance’; it may be considered as ‘endemic’ because it expresses a lot of specific sensory characters which depend on the ‘viticultural terroir’ (perception of acidity, wild cherry, artemisia, violet, mild spices, leather, truffle, chocolate, degree of excellence…).
That study needs to be deepened in the fields of micro-Climatology, .sensory analysis, grape berry Biochemistry.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Alain CARBONNEAU (1), Robert BOIDRON (2)

(1) Professor of Viticulture of Montpellier SupAgro, IHEV bâtiment 28, 2 place Viala, 34060 Montpellier cedex
(2) Honorary Director of ENTAV, ‘La Rochette’, 71960 La Roche Vineuse

Contact the author

Keywords

Pinot noir, Burgundy, world climates, adaptation, wine sensory analysis,’typicity’

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Effect of different plant fibers on the elimination of undesirable compounds in red wine 

The presence of undesirable compounds in wines, such as ota, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. Additionally, an excess of tannins can produce an undesirable increase in the astringency and bitterness of the wine, so tannins are also a target for reduction. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity.

From a local to an international scale: sensory benchmarking of PDO wines. Quincy and Reuilly PDO wines (Sauvignon blanc) as a case study (France)

In a collective marketing strategy, the Protected Designation of Origin (PDO) can be used as a quality indicator. To highlight terroir specificities, it is useful to know how the wines are positioned on the local, national or international market from a sensory point of view. This is especially true for a comparison of varietal wines (e.g. Sauvignon blanc). We focus on the case of two closed Loire Valley PDO (France): Quincy and Reuilly. Three distinct tastings were organized. Firstly, at the local level comparing the 2 PDO (11 and 9 wines, 17 professional assessors); secondly at a regional level adding 3 closed PDO: Menetou-Salon, Sancerre and Pouilly-Fumé (3 wines per PDO, 16 assessors) and thirdly at an international level comparing these 5 PDO with Sauvignon Blanc wines coming from South Africa, New Zealand and Chile (1 to 3 wines per PDO, 19 assessors). All the wines were from the 2019 vintage and were considered to have a traditional elaboration process without contact with oak. A sensory descriptive analysis was performed using an aroma wheel allowing to combine a Check-All-That-Apply methodology, often used in sensory benchmarking, with a hierarchical structuration of the attributes. The aim is to facilitate data acquisition in a professional context without common training, to consider the hierarchical relationships among the attributes during the data analysis and to be able to characterize wines with a large range of sensorial variability. We use univariate, multivariate and clustering analyses. Similarities and differences between Quincy and Reuilly PDO wines and other Sauvignon blanc wines were identified. Specific attributes can distinguish the two PDO and different proximities exist with other local PDO, while clear differences were observed compared to international wines. Our study contributes to propose and discuss a method to do a wine sensory benchmarking highlighting sensory specificities linked to origin.

Uncovering the effectiveness of vineyard techniques used to delay ripening through meta-analysis

One of the most concerning trends associated with increasing heat and water stress is advanced ripening of grapes, which leads to harvesting fruit at higher sugar concentrations but lacking optimal phenolic (i.e. color and mouthfeel) and aromatic maturity. Mitigation techniques for this phenomenon have been studied for many years and practices to delay sugar accumulation have been identified, including antitranspirants, delayed pruning and late-source-limitation techniques. Evaluation of the efficacy of these vineyard practices has occurred across a wide range of environments, vintages, varieties and growing conditions. To assess the broader efficacy of these three vineyard practices, which are easy-to-implement and cost-effective, a meta-analytic approach was adopted using data retrieved from 43 original studies.

Neural networks and ft-ir spectroscopy for the discrimination of single varietal and blended wines. A preliminary study.

Blending wines from different grape varieties is often used in order to increase wine complexity and balance. Due to their popularity, several types of blends such as the Bordeaux blend, are protected by PDO legislation.

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.